Adaptation of Corynebacterium glutamicum to salt-stress conditions

Fraenzel B, Troetschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA (2010)
PROTEOMICS 10(3): 445-457.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ; ;
Abstract / Bemerkung
Corynebacterium glutamicum is one of the biotechnologically most important microorganisms because of its ability to enrich amino acids extracellularly. Hence, C. glutamicum requires effective adaptation Strategies against both hypo- and hyperosmotic stress. We give a comprehensive and coherent outline about the quantitative dynamics of C. glutamicum during adaptation to hyperosmotic stress at the transcript and protein levels. The osmolyte carrier Prop, playing a pivotal role in hyperosmotic stress defence, exhibits the strongest up-regulation of all proteins. A conspicuously regulated group comprises proteins involved in lipid biosynthesis of the cell envelope. This is in accordance with our observation of a more viscous and stickier cell envelope, which is supported by the findings of an altered lipid composition. Together with our results, showing that several transporters were down-regulated, this membrane adaptation appears to be one of C. glutamicum's major protection strategies against hyperosmotic stress. In addition, we demonstrate that no oxidative stress and no iron limitation occur during salt stress contrary to former postulations. Ultimately, it is remarkable that various proteins with divergent mRNA-protein dynamics and regulation have been observed. This leads to the assumption that there are still unknown mechanisms in between the bacterial transcription, translation and post-translation and that these are waiting to be unravelled.


Fraenzel B, Troetschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA. Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS. 2010;10(3):445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., & Wolters, D. A. (2010). Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS, 10(3), 445-457. doi:10.1002/pmic.200900482
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., and Wolters, D. A. (2010). Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS 10, 445-457.
Fraenzel, B., et al., 2010. Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS, 10(3), p 445-457.
B. Fraenzel, et al., “Adaptation of Corynebacterium glutamicum to salt-stress conditions”, PROTEOMICS, vol. 10, 2010, pp. 445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., Wolters, D.A.: Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS. 10, 445-457 (2010).
Fraenzel, Benjamin, Troetschel, Christian, Rückert, Christian, Kalinowski, Jörn, Poetsch, Ansgar, and Wolters, Dirk Andreas. “Adaptation of Corynebacterium glutamicum to salt-stress conditions”. PROTEOMICS 10.3 (2010): 445-457.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum.
Xu N, Wang L, Cheng H, Liu Q, Liu J, Ma Y., FEMS Microbiol Lett 363(3), 2016
PMID: 26667218
Comparative proteome analysis reveals proteins involved in salt adaptation in Photobacterium damselae subsp. piscicida.
Chuang MY, Tsai WC, Kuo TY, Chen HM, Chen WJ., J Basic Microbiol 56(11), 2016
PMID: 27282981
Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT.
Voges R, Corsten S, Wiechert W, Noack S., J Proteomics 113(), 2015
PMID: 25451015
The CatSper channel controls chemosensation in sea urchin sperm.
Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strünker T., EMBO J 34(3), 2015
PMID: 25535245
High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor.
Pichlo M, Bungert-Plümke S, Weyand I, Seifert R, Bönigk W, Strünker T, Kashikar ND, Goodwin N, Müller A, Pelzer P, Van Q, Enderlein J, Klemm C, Krause E, Trötschel C, Poetsch A, Kremmer E, Kaupp UB, Körschen HG, Collienne U., J Cell Biol 206(4), 2014
PMID: 25135936
Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria.
Trötschel C, Albaum SP, Poetsch A., Microb Biotechnol 6(6), 2013
PMID: 23425033
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide.
Fränzel B, Penkova M, Frese C, Metzler-Nolte N, Andreas Wolters D., Proteomics 12(14), 2012
PMID: 22685012
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch A, Haussmann U, Burkovski A., Proteomics 11(15), 2011
PMID: 21674800
Advanced MudPIT as a next step toward high proteome coverage.
Fränzel B, Wolters DA., Proteomics 11(18), 2011
PMID: 21751368
Cell response of Escherichia coli to cisplatin-induced stress.
Stefanopoulou M, Kokoschka M, Sheldrick WS, Wolters DA., Proteomics 11(21), 2011
PMID: 21972224
Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.
Fränzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA., J Biol Inorg Chem 15(8), 2010
PMID: 20658302

63 References

Daten bereitgestellt von Europe PubMed Central.

ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation.
Pan C, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC, Hurst GB, Pelletier DA, Samatova NF, Hettich RL., Anal. Chem. 78(20), 2006
PMID: 17037911
Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum.
Weinand M, Kramer R, Morbach S., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17390131
The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis.
Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L., J. Bacteriol. 189(14), 2007
PMID: 17483212
Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum.
Ozcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Kramer R., J. Bacteriol. 189(20), 2007
PMID: 17693504
Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor.
Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ, Hu WS., PLoS ONE 3(5), 2008
PMID: 18461186
Bacterial membrane proteomics.
Poetsch A, Wolters D., Proteomics 8(19), 2008
PMID: 18780352
High-salinity-induced iron limitation in Bacillus subtilis.
Hoffmann T, Schutz A, Brosius M, Volker A, Volker U, Bremer E., J. Bacteriol. 184(3), 2002
PMID: 11790741


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 19950167
PubMed | Europe PMC

Suchen in

Google Scholar