Adaptation of Corynebacterium glutamicum to salt-stress conditions

Fraenzel B, Troetschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA (2010)
PROTEOMICS 10(3): 445-457.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ; ;
Corynebacterium glutamicum is one of the biotechnologically most important microorganisms because of its ability to enrich amino acids extracellularly. Hence, C. glutamicum requires effective adaptation Strategies against both hypo- and hyperosmotic stress. We give a comprehensive and coherent outline about the quantitative dynamics of C. glutamicum during adaptation to hyperosmotic stress at the transcript and protein levels. The osmolyte carrier Prop, playing a pivotal role in hyperosmotic stress defence, exhibits the strongest up-regulation of all proteins. A conspicuously regulated group comprises proteins involved in lipid biosynthesis of the cell envelope. This is in accordance with our observation of a more viscous and stickier cell envelope, which is supported by the findings of an altered lipid composition. Together with our results, showing that several transporters were down-regulated, this membrane adaptation appears to be one of C. glutamicum's major protection strategies against hyperosmotic stress. In addition, we demonstrate that no oxidative stress and no iron limitation occur during salt stress contrary to former postulations. Ultimately, it is remarkable that various proteins with divergent mRNA-protein dynamics and regulation have been observed. This leads to the assumption that there are still unknown mechanisms in between the bacterial transcription, translation and post-translation and that these are waiting to be unravelled.
Publishing Year

Cite this

Fraenzel B, Troetschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA. Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS. 2010;10(3):445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., & Wolters, D. A. (2010). Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS, 10(3), 445-457. doi:10.1002/pmic.200900482
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., and Wolters, D. A. (2010). Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS 10, 445-457.
Fraenzel, B., et al., 2010. Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS, 10(3), p 445-457.
B. Fraenzel, et al., “Adaptation of Corynebacterium glutamicum to salt-stress conditions”, PROTEOMICS, vol. 10, 2010, pp. 445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., Wolters, D.A.: Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS. 10, 445-457 (2010).
Fraenzel, Benjamin, Troetschel, Christian, Rückert, Christian, Kalinowski, Jörn, Poetsch, Ansgar, and Wolters, Dirk Andreas. “Adaptation of Corynebacterium glutamicum to salt-stress conditions”. PROTEOMICS 10.3 (2010): 445-457.
This data publication is cited in the following publications:
This publication cites the following data publications:

18 Citations in Europe PMC

Data provided by Europe PubMed Central.

pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J. Biotechnol. 259(), 2017
PMID: 28837821
Comparative proteome analysis reveals proteins involved in salt adaptation in Photobacterium damselae subsp. piscicida.
Chuang MY, Tsai WC, Kuo TY, Chen HM, Chen WJ., J. Basic Microbiol. 56(11), 2016
PMID: 27282981
In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum.
Xu N, Wang L, Cheng H, Liu Q, Liu J, Ma Y., FEMS Microbiol. Lett. 363(3), 2016
PMID: 26667218
The CatSper channel controls chemosensation in sea urchin sperm.
Seifert R, Flick M, Bonigk W, Alvarez L, Trotschel C, Poetsch A, Muller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strunker T., EMBO J. 34(3), 2015
PMID: 25535245
Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT.
Voges R, Corsten S, Wiechert W, Noack S., J Proteomics 113(), 2015
PMID: 25451015
High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor.
Pichlo M, Bungert-Plumke S, Weyand I, Seifert R, Bonigk W, Strunker T, Kashikar ND, Goodwin N, Muller A, Pelzer P, Van Q, Enderlein J, Klemm C, Krause E, Trotschel C, Poetsch A, Kremmer E, Kaupp UB, Korschen HG, Collienne U., J. Cell Biol. 206(4), 2014
PMID: 25135936
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cardenas MF, Banos S, Ramos A, Martin JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria.
Trotschel C, Albaum SP, Poetsch A., Microb Biotechnol 6(6), 2013
PMID: 23425033
Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide.
Franzel B, Penkova M, Frese C, Metzler-Nolte N, Andreas Wolters D., Proteomics 12(14), 2012
PMID: 22685012
Cell response of Escherichia coli to cisplatin-induced stress.
Stefanopoulou M, Kokoschka M, Sheldrick WS, Wolters DA., Proteomics 11(21), 2011
PMID: 21972224
Advanced MudPIT as a next step toward high proteome coverage.
Franzel B, Wolters DA., Proteomics 11(18), 2011
PMID: 21751368
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch A, Haussmann U, Burkovski A., Proteomics 11(15), 2011
PMID: 21674800
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nesvera J, Patek M., Appl. Microbiol. Biotechnol. 90(5), 2011
PMID: 21519933
Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.
Franzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA., J. Biol. Inorg. Chem. 15(8), 2010
PMID: 20658302

63 References

Data provided by Europe PubMed Central.

ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation.
Pan C, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC, Hurst GB, Pelletier DA, Samatova NF, Hettich RL., Anal. Chem. 78(20), 2006
PMID: 17037911
Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum.
Weinand M, Kramer R, Morbach S., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17390131
The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis.
Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L., J. Bacteriol. 189(14), 2007
PMID: 17483212
Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum.
Ozcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Kramer R., J. Bacteriol. 189(20), 2007
PMID: 17693504
Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor.
Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ, Hu WS., PLoS ONE 3(5), 2008
PMID: 18461186
Bacterial membrane proteomics.
Poetsch A, Wolters D., Proteomics 8(19), 2008
PMID: 18780352
High-salinity-induced iron limitation in Bacillus subtilis.
Hoffmann T, Schutz A, Brosius M, Volker A, Volker U, Bremer E., J. Bacteriol. 184(3), 2002
PMID: 11790741


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 19950167
PubMed | Europe PMC

Search this title in

Google Scholar