Nitrite-driven anaerobic methane oxidation by oxygenic bacteria

Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, et al. (2010)
Nature 464(7288): 543-548.

Download
No fulltext has been uploaded. References only!
Journal Article | Review | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxidemolecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Ettwig KF, Butler MK, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 2010;464(7288):543-548.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543-548. doi:10.1038/nature08883
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548.
Ettwig, K.F., et al., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), p 543-548.
K.F. Ettwig, et al., “Nitrite-driven anaerobic methane oxidation by oxygenic bacteria”, Nature, vol. 464, 2010, pp. 543-548.
Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H.J.C.T., van Alen, T., Luesken, F., Wu, M.L., van de Pas-Schoonen, K.T., den Camp, H.J.M.O., Janssen-Megens, E.M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 464, 543-548 (2010).
Ettwig, Katharina F., Butler, Margaret K., Le Paslier, Denis, Pelletier, Eric, Mangenot, Sophie, Kuypers, Marcel M. M., Schreiber, Frank, Dutilh, Bas E., Zedelius, Johannes, de Beer, Dirk, Gloerich, Jolein, Wessels, Hans J. C. T., van Alen, Theo, Luesken, Francisca, Wu, Ming L., van de Pas-Schoonen, Katinka T., den Camp, Huub J. M. Op, Janssen-Megens, Eva M., Francoijs, Kees-Jan, Stunnenberg, Henk, Weissenbach, Jean, Jetten, Mike S. M., and Strous, Marc. “Nitrite-driven anaerobic methane oxidation by oxygenic bacteria”. Nature 464.7288 (2010): 543-548.
This data publication is cited in the following publications:
This publication cites the following data publications:

349 Citations in Europe PMC

Data provided by Europe PubMed Central.

In quest of the nitrogen oxidizing prokaryotes of the early Earth.
Vlaeminck SE, Hay AG, Maignien L, Verstraete W., Environ Microbiol 13(2), 2011
PMID: 21040354
Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'.
Wu ML, de Vries S, van Alen TA, Butler MK, Op den Camp HJ, Keltjens JT, Jetten MS, Strous M., Microbiology 157(pt 3), 2011
PMID: 21071492
Archaea--timeline of the third domain.
Cavicchioli R., Nat Rev Microbiol 9(1), 2011
PMID: 21132019
Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake.
Siljanen HM, Saari A, Krause S, Lensu A, Abell GC, Bodrossy L, Bodelier PL, Martikainen PJ., FEMS Microbiol Ecol 75(3), 2011
PMID: 21175697
Enzymology and ecology of the nitrogen cycle.
Martínez-Espinosa RM, Cole JA, Richardson DJ, Watmough NJ., Biochem Soc Trans 39(1), 2011
PMID: 21265768
Nitrate and (per)chlorate reduction pathways in (per)chlorate-reducing bacteria.
Oosterkamp MJ, Mehboob F, Schraa G, Plugge CM, Stams AJ., Biochem Soc Trans 39(1), 2011
PMID: 21265779
A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.
Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L., Biochem Soc Trans 39(1), 2011
PMID: 21265781
Denitrification in Gram-positive bacteria: an underexplored trait.
Verbaendert I, De Vos P, Boon N, Heylen K., Biochem Soc Trans 39(1), 2011
PMID: 21265783
Emerging topics in marine methane biogeochemistry.
Valentine DL., Ann Rev Mar Sci 3(), 2011
PMID: 21329202
Evolution of photosynthesis.
Hohmann-Marriott MF, Blankenship RE., Annu Rev Plant Biol 62(), 2011
PMID: 21438681
Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno).
Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A., FEMS Microbiol Ecol 76(1), 2011
PMID: 21244447
Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation.
Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F., Environ Microbiol Rep 3(1), 2011
PMID: 21837252
A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs.
Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG., Environ Microbiol Rep 3(1), 2011
PMID: 23761236
Microorganisms and their roles in fundamental biogeochemical cycles.
Madsen EL., Curr Opin Biotechnol 22(3), 2011
PMID: 21333523
Anaerobic degradation of non-substituted aromatic hydrocarbons.
Meckenstock RU, Mouttaki H., Curr Opin Biotechnol 22(3), 2011
PMID: 21398107
Biogeochemistry: NO connection with methane.
Oremland RS., Nature 464(7288), 2010
PMID: 20336129
Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium 'Candidatus Kuenenia stuttgartiensis'.
van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJ, Jetten MS, Strous M., Mol Microbiol 77(3), 2010
PMID: 20545867
Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation.
Penny C, Vuilleumier S, Bringel F., FEMS Microbiol Ecol 74(2), 2010
PMID: 20695893
Functionalization of methane in anaerobic microorganisms.
Thauer RK., Angew Chem Int Ed Engl 49(38), 2010
PMID: 20672272

45 References

Data provided by Europe PubMed Central.

Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase.
Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M., Proc. Natl. Acad. Sci. U.S.A. 103(7), 2006
PMID: 16452171
Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath)
Prior, FEMS Microbiology Letters 29(1-2), 1985
A microbial consortium couples anaerobic methane oxidation to denitrification.
Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M., Nature 440(7086), 2006
PMID: 16612380
The oxygenation of the atmosphere and oceans.
Holland HD., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 361(1470), 2006
PMID: 16754606
Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide.
Demicheli V, Quijano C, Alvarez B, Radi R., Free Radic. Biol. Med. 42(9), 2007
PMID: 17395009
The biochemistry of methane oxidation.
Hakemian AS, Rosenzweig AC., Annu. Rev. Biochem. 76(), 2007
PMID: 17328677
Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3- and N2O: a review.
Kool DM, Wrage N, Oenema O, Dolfing J, Van Groenigen JW., Rapid Commun. Mass Spectrom. 21(22), 2007
PMID: 17935120
Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments.
Schreiber F, Polerecky L, de Beer D., Anal. Chem. 80(4), 2008
PMID: 18197634
Methane as fuel for anaerobic microorganisms.
Thauer RK, Shima S., Ann. N. Y. Acad. Sci. 1125(), 2008
PMID: 18096853
Metabolic Aspects of Aerobic Obligate Methanotrophy⋆
TROTSENKO, 2008
Transformation of the nitrogen cycle: recent trends, questions, and potential solutions.
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA., Science 320(5878), 2008
PMID: 18487183
Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M., Environ. Microbiol. 10(11), 2008
PMID: 18721142
Was nitric oxide the first deep electron sink?
Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W., Trends Biochem. Sci. 34(1), 2009
PMID: 19008107
The dynamic genetic repertoire of microbial communities.
Wilmes P, Simmons SL, Denef VJ, Banfield JF., FEMS Microbiol. Rev. 33(1), 2009
PMID: 19054116
De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads.
Farrer RA, Kemen E, Jones JD, Studholme DJ., FEMS Microbiol. Lett. 291(1), 2009
PMID: 19077061
Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum.
Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M., Appl. Environ. Microbiol. 75(11), 2009
PMID: 19329658
Anaerobic oxidation of methane: progress with an unknown process.
Knittel K, Boetius A., Annu. Rev. Microbiol. 63(), 2009
PMID: 19575572
Enrichment of denitrifying anaerobic methane oxidizing microorganisms
Hu, Environmental Microbiology Reports 1(5), 2009

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20336137
PubMed | Europe PMC

Search this title in

Google Scholar