Nitrite-driven anaerobic methane oxidation by oxygenic bacteria

Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, et al. (2010)
Nature 464(7288): 543-548.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxidemolecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Ettwig KF, Butler MK, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 2010;464(7288):543-548.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543-548.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548.
Ettwig, K.F., et al., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), p 543-548.
K.F. Ettwig, et al., “Nitrite-driven anaerobic methane oxidation by oxygenic bacteria”, Nature, vol. 464, 2010, pp. 543-548.
Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H.J.C.T., van Alen, T., Luesken, F., Wu, M.L., van de Pas-Schoonen, K.T., den Camp, H.J.M.O., Janssen-Megens, E.M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 464, 543-548 (2010).
Ettwig, Katharina F., Butler, Margaret K., Le Paslier, Denis, Pelletier, Eric, Mangenot, Sophie, Kuypers, Marcel M. M., Schreiber, Frank, Dutilh, Bas E., Zedelius, Johannes, de Beer, Dirk, Gloerich, Jolein, Wessels, Hans J. C. T., van Alen, Theo, Luesken, Francisca, Wu, Ming L., van de Pas-Schoonen, Katinka T., den Camp, Huub J. M. Op, Janssen-Megens, Eva M., Francoijs, Kees-Jan, Stunnenberg, Henk, Weissenbach, Jean, Jetten, Mike S. M., and Strous, Marc. “Nitrite-driven anaerobic methane oxidation by oxygenic bacteria”. Nature 464.7288 (2010): 543-548.
This data publication is cited in the following publications:
This publication cites the following data publications:

217 Citations in Europe PMC

Data provided by Europe PubMed Central.

XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments.
Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL, Chen Y, Murrell JC., Environ. Microbiol. 17(10), 2015
PMID: 25943904
Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.
Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ., ISME J 9(9), 2015
PMID: 25679533
Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska.
Matheus Carnevali PB, Rohrssen M, Williams MR, Michaud AB, Adams H, Berisford D, Love GD, Priscu JC, Rassuchine O, Hand KP, Murray AE., Geobiology 13(2), 2015
PMID: 25612141
Implications of Downstream Nitrate Dosage in anaerobic sewers to control sulfide and methane emissions.
Auguet O, Pijuan M, Guasch-Balcells H, Borrego CM, Gutierrez O., Water Res. 68(), 2015
PMID: 25462758
Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures.
Hatamoto M, Kimura M, Sato T, Koizumi M, Takahashi M, Kawakami S, Araki N, Yamaguchi T., PLoS ONE 9(12), 2014
PMID: 25545013
Biological conversion of methane to liquid fuels: status and opportunities.
Ge X, Yang L, Sheets JP, Yu Z, Li Y., Biotechnol. Adv. 32(8), 2014
PMID: 25281583
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps.
Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VJ., Proc. Natl. Acad. Sci. U.S.A. 111(40), 2014
PMID: 25246590
Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers.
Oshkin IY, Wegner CE, Luke C, Glagolev MV, Filippov IV, Pimenov NV, Liesack W, Dedysh SN., Appl. Environ. Microbiol. 80(19), 2014
PMID: 25063667
Methane oxidation linked to chlorite dismutation.
Miller LG, Baesman SM, Carlstrom CI, Coates JD, Oremland RS., Front Microbiol 5(), 2014
PMID: 24987389
CH4 emission and conversion from A2O and SBR processes in full-scale wastewater treatment plants.
Liu Y, Cheng X, Lun X, Sun D., J Environ Sci (China) 26(1), 2014
PMID: 24649710
Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol.
Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ, Vuilleumier S, Semrau JD., Appl. Environ. Microbiol. 80(10), 2014
PMID: 24610846
The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition.
Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow HH, Kruger M., FEMS Microbiol. Ecol. 86(2), 2013
PMID: 23746056

45 References

Data provided by Europe PubMed Central.

Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase.
Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M., Proc. Natl. Acad. Sci. U.S.A. 103(7), 2006
PMID: 16452171
Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath)
Prior, FEMS Microbiology Letters 29(1-2), 1985
A microbial consortium couples anaerobic methane oxidation to denitrification.
Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M., Nature 440(7086), 2006
PMID: 16612380
The oxygenation of the atmosphere and oceans.
Holland HD., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 361(1470), 2006
PMID: 16754606
Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide.
Demicheli V, Quijano C, Alvarez B, Radi R., Free Radic. Biol. Med. 42(9), 2007
PMID: 17395009
The biochemistry of methane oxidation.
Hakemian AS, Rosenzweig AC., Annu. Rev. Biochem. 76(), 2007
PMID: 17328677
Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3- and N2O: a review.
Kool DM, Wrage N, Oenema O, Dolfing J, Van Groenigen JW., Rapid Commun. Mass Spectrom. 21(22), 2007
PMID: 17935120
Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments.
Schreiber F, Polerecky L, de Beer D., Anal. Chem. 80(4), 2008
PMID: 18197634
Methane as fuel for anaerobic microorganisms.
Thauer RK, Shima S., Ann. N. Y. Acad. Sci. 1125(), 2008
PMID: 18096853
Metabolic Aspects of Aerobic Obligate Methanotrophy⋆
TROTSENKO, 2008
Transformation of the nitrogen cycle: recent trends, questions, and potential solutions.
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA., Science 320(5878), 2008
PMID: 18487183
Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M., Environ. Microbiol. 10(11), 2008
PMID: 18721142
Was nitric oxide the first deep electron sink?
Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W., Trends Biochem. Sci. 34(1), 2009
PMID: 19008107
The dynamic genetic repertoire of microbial communities.
Wilmes P, Simmons SL, Denef VJ, Banfield JF., FEMS Microbiol. Rev. 33(1), 2009
PMID: 19054116
De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads.
Farrer RA, Kemen E, Jones JD, Studholme DJ., FEMS Microbiol. Lett. 291(1), 2009
PMID: 19077061
Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum.
Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M., Appl. Environ. Microbiol. 75(11), 2009
PMID: 19329658
Anaerobic oxidation of methane: progress with an unknown process.
Knittel K, Boetius A., Annu. Rev. Microbiol. 63(), 2009
PMID: 19575572
Enrichment of denitrifying anaerobic methane oxidizing microorganisms
Hu, Environmental Microbiology Reports 1(5), 2009

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20336137
PubMed | Europe PMC

Search this title in

Google Scholar