Cephoids: Minkowski sums of de Gua simplexes

Pallaschke D, Rosenmüller J (2010)
OPTIMIZATION 59(4): 515-540.

Journal Article | Published | English

No fulltext has been uploaded

Author
;
Abstract
Within this article we discuss the structure of those polytopes in [image omitted] which are Minkowski sums of de Gua simplexes. A de Gua simplex is the convex hull of the origin and n positive multiples of the unit vectors (see [J.J. Gray, Algebra in geometry from Newton to Plucker (German), Math. Semesterberichte 36 (1989), pp. 175-204.]). We characterize these polytopes by describing the shape of their (outward) faces. Given some notion of 'nondegeneracy' or 'general position' for our polytopes, we present a recursive procedure that yields all maximal faces. Also, we derive a formula indicating the number of maximal faces, which depends on the dimension and the number of de Gua simplexes involved only.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Pallaschke D, Rosenmüller J. Cephoids: Minkowski sums of de Gua simplexes. OPTIMIZATION. 2010;59(4):515-540.
Pallaschke, D., & Rosenmüller, J. (2010). Cephoids: Minkowski sums of de Gua simplexes. OPTIMIZATION, 59(4), 515-540.
Pallaschke, D., and Rosenmüller, J. (2010). Cephoids: Minkowski sums of de Gua simplexes. OPTIMIZATION 59, 515-540.
Pallaschke, D., & Rosenmüller, J., 2010. Cephoids: Minkowski sums of de Gua simplexes. OPTIMIZATION, 59(4), p 515-540.
D. Pallaschke and J. Rosenmüller, “Cephoids: Minkowski sums of de Gua simplexes”, OPTIMIZATION, vol. 59, 2010, pp. 515-540.
Pallaschke, D., Rosenmüller, J.: Cephoids: Minkowski sums of de Gua simplexes. OPTIMIZATION. 59, 515-540 (2010).
Pallaschke, D., and Rosenmüller, Joachim. “Cephoids: Minkowski sums of de Gua simplexes”. OPTIMIZATION 59.4 (2010): 515-540.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar