Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins

Akrap N, Seidel T, Barisas BG (2010)
ANALYTICAL BIOCHEMISTRY 402(1): 105-106.

Download
No fulltext has been uploaded. References only!
Journal Article | | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
We present, for the red fluorescent protein mCherry acting as both fluorescence resonant energy transfer (FRET) donor and acceptor, Forster critical distance (r(0)) values with five important visible fluorescent protein (VFP) variants as well as with itself. The pair EYFP-mCherry exhibits an r(0) of 5.66 nm, equaling or exceeding any combination of VFPs reported previously. Moreover, mCherry should be an excellent chromophore for homo-FRET with an r(0) of 5.10 nm for energy transfer between two mCherry moieties. Finally, mCherry exhibits higher r(0) values than does DsRed. These characteristics, combined with mCherry's rapid folding and excellent spectral properties, suggest that mCherry constitutes a valuable long-wavelength hetero-FRET acceptor and probe for homo-FRET experiments. (C) 2010 Elsevier Inc. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Akrap N, Seidel T, Barisas BG. Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. ANALYTICAL BIOCHEMISTRY. 2010;402(1):105-106.
Akrap, N., Seidel, T., & Barisas, B. G. (2010). Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. ANALYTICAL BIOCHEMISTRY, 402(1), 105-106. doi:10.1016/j.ab.2010.03.026
Akrap, N., Seidel, T., and Barisas, B. G. (2010). Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. ANALYTICAL BIOCHEMISTRY 402, 105-106.
Akrap, N., Seidel, T., & Barisas, B.G., 2010. Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. ANALYTICAL BIOCHEMISTRY, 402(1), p 105-106.
N. Akrap, T. Seidel, and B.G. Barisas, “Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins”, ANALYTICAL BIOCHEMISTRY, vol. 402, 2010, pp. 105-106.
Akrap, N., Seidel, T., Barisas, B.G.: Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. ANALYTICAL BIOCHEMISTRY. 402, 105-106 (2010).
Akrap, Nina, Seidel, Thorsten, and Barisas, B. George. “Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins”. ANALYTICAL BIOCHEMISTRY 402.1 (2010): 105-106.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 Citations in Europe PMC

Data provided by Europe PubMed Central.

Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.
Błasiak E, Łukasiewicz S, Szafran-Pilch K, Dziedzicka-Wasylewska M., Pharmacol Rep 69(2), 2017
PMID: 28119185
GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.
Paladino S, Lebreton S, Lelek M, Riccio P, De Nicola S, Zimmer C, Zurzolo C., Biochem J 474(24), 2017
PMID: 29046391
Manipulation of Subunit Stoichiometry in Heteromeric Membrane Proteins.
Morales-Perez CL, Noviello CM, Hibbs RE., Structure 24(5), 2016
PMID: 27041595
The CD4 and CD3δε Cytosolic Juxtamembrane Regions Are Proximal within a Compact TCR-CD3-pMHC-CD4 Macrocomplex.
Glassman CR, Parrish HL, Deshpande NR, Kuhns MS., J Immunol 196(11), 2016
PMID: 27183595
Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study.
Greife A, Felekyan S, Ma Q, Gertzen CG, Spomer L, Dimura M, Peulen TO, Wöhler C, Häussinger D, Gohlke H, Keitel V, Seidel CA., Sci Rep 6(), 2016
PMID: 27833095
Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor.
Mazurkiewicz JE, Herrick-Davis K, Barroso M, Ulloa-Aguirre A, Lindau-Shepard B, Thomas RM, Dias JA., Biol Reprod 92(4), 2015
PMID: 25761594
The action of HIF-3α variants on HIF-2α-HIF-1β heterodimer formation is directly probed in live cells.
Kim SH, Hwang D, Park H, Yang EG, Chung HS, Kim SY., Exp Cell Res 336(2), 2015
PMID: 26160453
Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.
George Abraham B, Sarkisyan KS, Mishin AS, Santala V, Tkachenko NV, Karp M., PLoS One 10(8), 2015
PMID: 26237400
Fluorescent proteins as genetically encoded FRET biosensors in life sciences.
Hochreiter B, Garcia AP, Schmid JA., Sensors (Basel) 15(10), 2015
PMID: 26501285
Fluorescence lifetime imaging microscopy in the medical sciences.
Ebrecht R, Don Paul C, Wouters FS., Protoplasma 251(2), 2014
PMID: 24390249
Engineering genetically encoded FRET sensors.
Lindenburg L, Merkx M., Sensors (Basel) 14(7), 2014
PMID: 24991940
Kaede for detection of protein oligomerization.
Wolf H, Barisas BG, Dietz KJ, Seidel T., Mol Plant 6(5), 2013
PMID: 23430050
Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740
Förster resonance energy transfer (FRET) correlates of altered subunit stoichiometry in cys-loop receptors, exemplified by nicotinic α4β2.
Srinivasan R, Richards CI, Dilworth C, Moss FJ, Dougherty DA, Lester HA., Int J Mol Sci 13(8), 2012
PMID: 22949846

7 References

Data provided by Europe PubMed Central.

Zwischenmolekulare energiewanderung und fluoreszenz
Förster T., 1948
Forster distances between green fluorescent protein pairs.
Patterson GH, Piston DW, Barisas BG., Anal. Biochem. 284(2), 2000
PMID: 10964438
Practical Use of Corrected Fluorescence Excitation and Emission Spectra of Fluorescent Proteins in Förster Resonance Energy Transfer (FRET) Studies
Hink MA, Visser NV, Borst JW, Hoek A.v., Visser AJWG., 2003
A new harvest of fluorescent proteins.
Patterson GH., Nat. Biotechnol. 22(12), 2004
PMID: 15583657
Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution.
Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen HC., Biophys. J. 97(9), 2009
PMID: 19883605
Fluorescent proteins for single-molecule fluorescence applications.
Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz KJ, Heilemann M, Sauer M., J Biophotonics 1(1), 2008
PMID: 19343637
Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F., Photochem. Photobiol. 85(1), 2009
PMID: 18764891

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20347671
PubMed | Europe PMC

Search this title in

Google Scholar