The Waddlia Genome: A Window into Chlamydial Biology

Bertelli C, Collyn F, Croxatto A, Rückert C, Polkinghorne A, Kebbi-Beghdadi C, Goesmann A, Vaughan L, Greub G (2010)
PLOS ONE 5(5): e10890.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ; ; ; ; ;
Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2'116'312bp chromosome and a 15'593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.
Publishing Year

Cite this

Bertelli C, Collyn F, Croxatto A, et al. The Waddlia Genome: A Window into Chlamydial Biology. PLOS ONE. 2010;5(5):e10890.
Bertelli, C., Collyn, F., Croxatto, A., Rückert, C., Polkinghorne, A., Kebbi-Beghdadi, C., Goesmann, A., et al. (2010). The Waddlia Genome: A Window into Chlamydial Biology. PLOS ONE, 5(5), e10890. doi:10.1371/journal.pone.0010890
Bertelli, C., Collyn, F., Croxatto, A., Rückert, C., Polkinghorne, A., Kebbi-Beghdadi, C., Goesmann, A., Vaughan, L., and Greub, G. (2010). The Waddlia Genome: A Window into Chlamydial Biology. PLOS ONE 5, e10890.
Bertelli, C., et al., 2010. The Waddlia Genome: A Window into Chlamydial Biology. PLOS ONE, 5(5), p e10890.
C. Bertelli, et al., “The Waddlia Genome: A Window into Chlamydial Biology”, PLOS ONE, vol. 5, 2010, pp. e10890.
Bertelli, C., Collyn, F., Croxatto, A., Rückert, C., Polkinghorne, A., Kebbi-Beghdadi, C., Goesmann, A., Vaughan, L., Greub, G.: The Waddlia Genome: A Window into Chlamydial Biology. PLOS ONE. 5, e10890 (2010).
Bertelli, Claire, Collyn, Francois, Croxatto, Antony, Rückert, Christian, Polkinghorne, Adam, Kebbi-Beghdadi, Carole, Goesmann, Alexander, Vaughan, Lloyd, and Greub, Gilbert. “The Waddlia Genome: A Window into Chlamydial Biology”. PLOS ONE 5.5 (2010): e10890.
This data publication is cited in the following publications:
This publication cites the following data publications:

45 Citations in Europe PMC

Data provided by Europe PubMed Central.

Mouse Model of Respiratory Tract Infection Induced by Waddlia chondrophila.
Pilloux L, LeRoy D, Brunel C, Roger T, Greub G., PLoS ONE 11(3), 2016
PMID: 26950066
Waddlia chondrophila induces systemic infection, organ pathology, and elicits Th1-associated humoral immunity in a murine model of genital infection.
Vasilevsky S, Gyger J, Piersigilli A, Pilloux L, Greub G, Stojanov M, Baud D., Front Cell Infect Microbiol 5(), 2015
PMID: 26583077
Permissivity of insect cells to Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae.
Kebbi-Beghdadi C, Fatton M, Greub G., Microbes Infect. 17(11-12), 2015
PMID: 26423021
OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila.
Kebbi-Beghdadi C, Domrose A, Becker E, Cisse OH, Hegemann JH, Greub G., Pathog Dis 73(6), 2015
PMID: 25986220
Trafficking of Estrella lausannensis in human macrophages.
Rusconi B, Kebbi-Beghdadi C, Greub G., Pathog Dis 73(5), 2015
PMID: 25857735
Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights.
Bertelli C, Aeby S, Chassot B, Clulow J, Hilfiker O, Rappo S, Ritzmann S, Schumacher P, Terrettaz C, Benaglio P, Falquet L, Farinelli L, Gharib WH, Goesmann A, Harshman K, Linke B, Miyazaki R, Rivolta C, Robinson-Rechavi M, van der Meer JR, Greub G., Front Microbiol 6(), 2015
PMID: 25745418
Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.
Yamane C, Yamazaki T, Nakamura S, Matsuo J, Ishida K, Yamazaki S, Oguri S, Shouji N, Hayashi Y, Yoshida M, Yimin , Yamaguchi H., PLoS ONE 10(2), 2015
PMID: 25643359
Conserved features and major differences in the outer membrane protein composition of chlamydiae.
Aistleitner K, Anrather D, Schott T, Klose J, Bright M, Ammerer G, Horn M., Environ. Microbiol. 17(4), 2015
PMID: 25212454
Undressing of Waddlia chondrophila to enrich its outer membrane proteins to develop a new species-specific ELISA.
Lienard J, Croxatto A, Gervaix A, Posfay-Barbe K, Baud D, Kebbi-Beghdadi C, Greub G., New Microbes New Infect 2(1), 2014
PMID: 25356333
Waddlia chondrophila infects and multiplies in ovine trophoblast cells stimulating an inflammatory immune response.
Wheelhouse N, Coyle C, Barlow PG, Mitchell S, Greub G, Baszler T, Rae MT, Longbottom D., PLoS ONE 9(7), 2014
PMID: 25010668
Pathogenesis and cell corruption by intracellular bacteria.
Greub G., Microbes Infect. 15(14-15), 2013
PMID: 24141090
Discovery of catalases in members of the Chlamydiales order.
Rusconi B, Greub G., J. Bacteriol. 195(16), 2013
PMID: 23729651
Protochlamydia induces apoptosis of human HEp-2 cells through mitochondrial dysfunction mediated by chlamydial protease-like activity factor.
Matsuo J, Nakamura S, Ito A, Yamazaki T, Ishida K, Hayashi Y, Yoshida M, Takahashi K, Sekizuka T, Takeuchi F, Kuroda M, Nagai H, Hayashida K, Sugimoto C, Yamaguchi H., PLoS ONE 8(2), 2013
PMID: 23409113
The chlamydiales pangenome revisited: structural stability and functional coherence.
Psomopoulos FE, Siarkou VI, Papanikolaou N, Iliopoulos I, Tsaftaris AS, Promponas VJ, Ouzounis CA., Genes (Basel) 3(2), 2012
PMID: 24704919
Identification of immunogenic proteins of Waddlia chondrophila.
Kebbi-Beghdadi C, Lienard J, Uyttebroeck F, Baud D, Riederer BM, Greub G., PLoS ONE 7(1), 2012
PMID: 22238579

62 References

Data provided by Europe PubMed Central.

Improved microbial gene identification with GLIMMER.
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL., Nucleic Acids Res. 27(23), 1999
PMID: 10556321
REGANOR: a gene prediction server for prokaryotic genomes and a database of high quality gene predictions for prokaryotes.
Linke B, McHardy AC, Neuweger H, Krause L, Meyer F., Appl. Bioinformatics 5(3), 2006
PMID: 16922601
Improved prediction of signal peptides: SignalP 3.0.
Bendtsen JD, Nielsen H, von Heijne G, Brunak S., J. Mol. Biol. 340(4), 2004
PMID: 15223320
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
DNAPlotter: circular and linear interactive genome visualization.
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J., Bioinformatics 25(1), 2009
PMID: 18990721
REPuter: the manifold applications of repeat analysis on a genomic scale.
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R., Nucleic Acids Res. 29(22), 2001
PMID: 11713313
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
T-Coffee: A novel method for fast and accurate multiple sequence alignment.
Notredame C, Higgins DG, Heringa J., J. Mol. Biol. 302(1), 2000
PMID: 10964570
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
Modeling ensembles of transmembrane beta-barrel proteins.
Waldispuhl J, O'Donnell CW, Devadas S, Clote P, Berger B., Proteins 71(3), 2008
PMID: 18004792
Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins.
McDonnell AV, Menke M, Palmer N, King J, Cowen L, Berger B., Proteins 63(4), 2006
PMID: 16547930


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 20531937
PubMed | Europe PMC

Search this title in

Google Scholar