Microalgal hydrogen production

Kruse O, Hankamer B (2010)
CURRENT OPINION IN BIOTECHNOLOGY 21(3): 238-243.

Journal Article | Published | English

No fulltext has been uploaded

Author
;
Abstract
A select group of unicellular green algae have evolved the ability to capture solar energy and to use it to split water to produce molecular oxygen (released into the atmosphere) as well as H+ and e(-) that are combined to produce hydrogen. Theoretically this process therefore forms the basis for the development of sustainable solar powered hydrogen fuel production systems. This article reviews recent advances made and highlights key areas for further development as part of a strategy of establishing economically viable hydrogen production systems.
Publishing Year
ISSN
PUB-ID

Cite this

Kruse O, Hankamer B. Microalgal hydrogen production. CURRENT OPINION IN BIOTECHNOLOGY. 2010;21(3):238-243.
Kruse, O., & Hankamer, B. (2010). Microalgal hydrogen production. CURRENT OPINION IN BIOTECHNOLOGY, 21(3), 238-243.
Kruse, O., and Hankamer, B. (2010). Microalgal hydrogen production. CURRENT OPINION IN BIOTECHNOLOGY 21, 238-243.
Kruse, O., & Hankamer, B., 2010. Microalgal hydrogen production. CURRENT OPINION IN BIOTECHNOLOGY, 21(3), p 238-243.
O. Kruse and B. Hankamer, “Microalgal hydrogen production”, CURRENT OPINION IN BIOTECHNOLOGY, vol. 21, 2010, pp. 238-243.
Kruse, O., Hankamer, B.: Microalgal hydrogen production. CURRENT OPINION IN BIOTECHNOLOGY. 21, 238-243 (2010).
Kruse, Olaf, and Hankamer, Ben. “Microalgal hydrogen production”. CURRENT OPINION IN BIOTECHNOLOGY 21.3 (2010): 238-243.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.
Xiong W, Zhao X, Zhu G, Shao C, Li Y, Ma W, Xu X, Tang R., Angew. Chem. Int. Ed. Engl. 54(41), 2015
PMID: 26302695
Artificial photosynthesis: understanding water splitting in nature.
Cox N, Pantazis DA, Neese F, Lubitz W., Interface Focus 5(3), 2015
PMID: 26052426
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.
Cornish AJ, Green R, Gartner K, Mason S, Hegg EL., PLoS ONE 10(4), 2015
PMID: 25927230
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
Diamond S, Jun D, Rubin BE, Golden SS., Proc. Natl. Acad. Sci. U.S.A. 112(15), 2015
PMID: 25825710
Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp.
Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A., Int J Mol Sci 16(2), 2015
PMID: 25629229
Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
Torzillo G, Scoma A, Faraloni C, Giannelli L., Crit. Rev. Biotechnol. 35(4), 2015
PMID: 24754449
Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of Tetraselmis.
D'Adamo S, Jinkerson RE, Boyd ES, Brown SL, Baxter BK, Peters JW, Posewitz MC., PLoS ONE 9(1), 2014
PMID: 24465722
Improving the feasibility of producing biofuels from microalgae using wastewater.
Rawat I, Bhola V, Kumar RR, Bux F., Environ Technol 34(13-16), 2013
PMID: 24350433
Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii.
Lauersen KJ, Vanderveer TL, Berger H, Kaluza I, Mussgnug JH, Walker VK, Kruse O., Appl. Microbiol. Biotechnol. 97(22), 2013
PMID: 24037309
Isolation, identification and characterization of an electrogenic microalgae strain.
Wu Y, Guan K, Wang Z, Xu B, Zhao F., PLoS ONE 8(9), 2013
PMID: 24019922
Synthetic genomics and synthetic biology applications between hopes and concerns.
Konig H, Frank D, Heil R, Coenen C., Curr. Genomics 14(1), 2013
PMID: 23997647
Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT.
Lin HD, Liu BH, Kuo TT, Tsai HC, Feng TY, Huang CC, Chien LF., Bioresour. Technol. 143(), 2013
PMID: 23792754
Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production.
Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK., Mol. Biol. Rep. 40(7), 2013
PMID: 23652998
RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.
Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kugler J, Ringsmuth AK, Kruse O, Hankamer B., PLoS ONE 8(4), 2013
PMID: 23613840
Photoautotrophic cathodic oxygen reduction catalyzed by a green alga, Chlamydomonas reinhardtii.
Liu XW, Sun XF, Huang YX, Li DB, Zeng RJ, Xiong L, Sheng GP, Li WW, Cheng YY, Wang SG, Yu HQ., Biotechnol. Bioeng. 110(1), 2013
PMID: 22886619
Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.
Brennan L, Blanco Fernandez A, Mostaert AS, Owende P., J. Microbiol. Methods 90(2), 2012
PMID: 22521923
Strategies for improving biological hydrogen production.
Hallenbeck PC, Abo-Hashesh M, Ghosh D., Bioresour. Technol. 110(), 2012
PMID: 22342581
AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome.
Dal'Molin CG, Quek LE, Palfreyman RW, Nielsen LK., BMC Genomics 12 Suppl 4(), 2011
PMID: 22369158
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS ONE 6(12), 2011
PMID: 22242116
Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.
Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M., New Phytol. 190(2), 2011
PMID: 21563367
Engineering cyanobacteria to generate high-value products.
Ducat DC, Way JC, Silver PA., Trends Biotechnol. 29(2), 2011
PMID: 21211860

47 References

Data provided by Europe PubMed Central.

Aquatic phototrophs: efficient alternatives to land-based crops for biofuels.
Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC., Curr. Opin. Biotechnol. 19(3), 2008
PMID: 18539450
Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM., Eukaryotic Cell 7(11), 2008
PMID: 18708561
Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light.
Tolstygina IV, Antal TK, Kosourov SN, Krendeleva TE, Rubin AB, Tsygankov AA., Biotechnol. Bioeng. 102(4), 2009
PMID: 18985615
Oxygen-tolerant H2 oxidation by membrane-bound [NiFe] hydrogenases of ralstonia species. Coping with low level H2 in air.
Ludwig M, Cracknell JA, Vincent KA, Armstrong FA, Lenz O., J. Biol. Chem. 284(1), 2009
PMID: 18990688
A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas.
Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F., Proc. Natl. Acad. Sci. U.S.A. 105(51), 2008
PMID: 19074271
Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.
Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S., Photochem. Photobiol. Sci. 8(2), 2009
PMID: 19247505
Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: design of a catalytic surface for the production of molecular hydrogen.
Krassen H, Stripp S, von Abendroth G, Ataka K, Happe T, Heberle J., J. Biotechnol. 142(1), 2009
PMID: 19480942
Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O., J. Biotechnol. 142(1), 2009
PMID: 19480949
Analytical approaches to photobiological hydrogen production in unicellular green algae.
Hemschemeier A, Melis A, Happe T., Photosyn. Res. 102(2-3), 2009
PMID: 19291418
Microalgae and terrestrial biomass as source for fuels--a process view.
Posten C, Schaub G., J. Biotechnol. 142(1), 2009
PMID: 19446353
Phylogenetic and molecular analysis of hydrogen-producing green algae.
Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, Schenk PM., J. Exp. Bot. 60(6), 2009
PMID: 19342428
Chlamydomonas proteomics.
Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V., Curr. Opin. Microbiol. 12(3), 2009
PMID: 19451016
Engineering algae for biohydrogen and biofuel production.
Beer LL, Boyd ES, Peters JW, Posewitz MC., Curr. Opin. Biotechnol. 20(3), 2009
PMID: 19560336
Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant.
Dementin S, Leroux F, Cournac L, de Lacey AL, Volbeda A, Leger C, Burlat B, Martinez N, Champ S, Martin L, Sanganas O, Haumann M, Fernandez VM, Guigliarelli B, Fontecilla-Camps JC, Rousset M., J. Am. Chem. Soc. 131(29), 2009
PMID: 19580279
Design principles of photo-bioreactors for cultivation of microalgae
Posten, Engineering in Life Sciences 9(3), 2009
Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism.
Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G., Plant Physiol. 151(2), 2009
PMID: 19700559
How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.
Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T., Proc. Natl. Acad. Sci. U.S.A. 106(41), 2009
PMID: 19805068

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20399635
PubMed | Europe PMC

Search this title in

Google Scholar