Developments and perspectives of photobioreactors for biofuel production

Morweiser M, Kruse O, Hankamer B, Posten C (2010)
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 87(4): 1291-1301.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
The production of biofuels from microalgae requires efficient photobioreactors in order to meet the tight constraints of energy efficiency and economic profitability. Current cultivation systems are designed for high-value products rather than for mass production of cheap energy carriers. Future bioreactors will imply innovative solutions in terms of energy efficiency, light and gas transfer or attainable biomass concentration to lower the energy demand and cut down production costs. A new generation of highly developed reactor designs demonstrates the enormous potential of photobioreactors. However, a net energy production with microalgae remains challenging. Therefore, it is essential to review all aspects and production steps for optimization potential. This includes a custom process design according to production organism, desired product and production site. Moreover, the potential of microalgae to synthesize valuable products additionally to the energetic use can be integrated into a production concept as well as waste streams for carbon supply or temperature control.
Erscheinungsjahr
Zeitschriftentitel
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Band
87
Ausgabe
4
Seite(n)
1291-1301
ISSN
eISSN
PUB-ID

Zitieren

Morweiser M, Kruse O, Hankamer B, Posten C. Developments and perspectives of photobioreactors for biofuel production. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2010;87(4):1291-1301.
Morweiser, M., Kruse, O., Hankamer, B., & Posten, C. (2010). Developments and perspectives of photobioreactors for biofuel production. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 87(4), 1291-1301. doi:10.1007/s00253-010-2697-x
Morweiser, M., Kruse, O., Hankamer, B., and Posten, C. (2010). Developments and perspectives of photobioreactors for biofuel production. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 87, 1291-1301.
Morweiser, M., et al., 2010. Developments and perspectives of photobioreactors for biofuel production. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 87(4), p 1291-1301.
M. Morweiser, et al., “Developments and perspectives of photobioreactors for biofuel production”, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 87, 2010, pp. 1291-1301.
Morweiser, M., Kruse, O., Hankamer, B., Posten, C.: Developments and perspectives of photobioreactors for biofuel production. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 87, 1291-1301 (2010).
Morweiser, Michael, Kruse, Olaf, Hankamer, Ben, and Posten, Clemens. “Developments and perspectives of photobioreactors for biofuel production”. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 87.4 (2010): 1291-1301.

27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Holistic Approach to Managing Microalgae for Biofuel Applications.
Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS., Int J Mol Sci 18(1), 2017
PMID: 28117737
Fractional conversion of microalgae from water blooms.
Zhou Y, Li L, Zhang R, Hu C., Faraday Discuss 202(), 2017
PMID: 28660966
Design and construction of a photobioreactor for hydrogen production, including status in the field.
Skjånes K, Andersen U, Heidorn T, Borgvang SA., J Appl Phycol 28(), 2016
PMID: 27471341
Increased biomass productivity in green algae by tuning non-photochemical quenching.
Berteotti S, Ballottari M, Bassi R., Sci Rep 6(), 2016
PMID: 26888481
Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.
Golberg A, Sack M, Teissie J, Pataro G, Pliquett U, Saulis G, Stefan T, Miklavcic D, Vorobiev E, Frey W., Biotechnol Biofuels 9(), 2016
PMID: 27127539
A simple method for decomposition of peracetic acid in a microalgal cultivation system.
Sung MG, Lee H, Nam K, Rexroth S, Rögner M, Kwon JH, Yang JW., Bioprocess Biosyst Eng 38(3), 2015
PMID: 25270405
Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery.
Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F., Bioresour Technol 179(), 2015
PMID: 25579230
Deceleration-stats save much time during phototrophic culture optimization.
Hoekema S, Rinzema A, Tramper J, Wijffels RH, Janssen M., Biotechnol Bioeng 111(4), 2014
PMID: 24122652
Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient.
Huang J, Li Y, Wan M, Yan Y, Feng F, Qu X, Wang J, Shen G, Li W, Fan J, Wang W., Bioresour Technol 159(), 2014
PMID: 24632435
Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors.
Fuentes-Grünewald C, Garcés E, Alacid E, Rossi S, Camp J., Mar Biotechnol (NY) 15(1), 2013
PMID: 22544375
Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
Hindersin S, Leupold M, Kerner M, Hanelt D., Bioprocess Biosyst Eng 36(3), 2013
PMID: 22847362
Flocculation as a low-cost method for harvesting microalgae for bulk biomass production.
Vandamme D, Foubert I, Muylaert K., Trends Biotechnol 31(4), 2013
PMID: 23336995
Biotechnologies for greenhouse gases (CH₄, N₂O, and CO₂) abatement: state of the art and challenges.
López JC, Quijano G, Souza TS, Estrada JM, Lebrero R, Muñoz R., Appl Microbiol Biotechnol 97(6), 2013
PMID: 23389341
Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.
Croze OA, Sardina G, Ahmed M, Bees MA, Brandt L., J R Soc Interface 10(81), 2013
PMID: 23407572
The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters.
He PJ, Mao B, Lü F, Shao LM, Lee DJ, Chang JS., Bioresour Technol 146(), 2013
PMID: 23973976
Integrated green algal technology for bioremediation and biofuel.
Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ., Bioresour Technol 107(), 2012
PMID: 22230775
Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor.
Ozkan A, Kinney K, Katz L, Berberoglu H., Bioresour Technol 114(), 2012
PMID: 22503193
LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology.
Khozin-Goldberg I, Iskandarov U, Cohen Z., Appl Microbiol Biotechnol 91(4), 2011
PMID: 21720821

54 References

Daten bereitgestellt von Europe PubMed Central.


FG, Chem Eng Sci 56(8), 2001

MR, Am Control Conf 1-9(), 2009

F, Chem Eng Sci 59(20), 2004
Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns
Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR., Aquaculture 261(3), 2006
PMID: IND43861047
Biodiesel from microalgae beats bioethanol.
Chisti Y., Trends Biotechnol. 26(3), 2008
PMID: 18221809

Y, Trends Biotechnol 26(7), 2008
Environmental life cycle comparison of algae to other bioenergy feedstocks.
Clarens AF, Resurreccion EP, White MA, Colosi LM., Environ. Sci. Technol. 44(5), 2010
PMID: 20085253
A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect.
Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W., J. Biotechnol. 92(2), 2001
PMID: 11640980

J, J Appl Phycol 17(5), 2005

AUTHOR UNKNOWN, 0

PG, Mar Biol 45(4), 1978

K, 2004

AUTHOR UNKNOWN, 0
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.
Gaffron H, Rubin J., J. Gen. Physiol. 26(2), 1942
PMID: 19873339
Solid and liquid residues as raw materials for biotechnology.
Gallert C, Winter J., Naturwissenschaften 89(11), 2002
PMID: 12451450

K, Eng Life Sci 9(6), 2009

S, Bioresour Technol 38(2–3), 1991
Placing microalgae on the biofuels priority list: a review of the technological challenges.
Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ., J R Soc Interface 7(46), 2009
PMID: 20031983
Algal Growth in Crossed Gradients of Light Intensity and Temperature.
Halldal P, French CS., Plant Physiol. 33(4), 1958
PMID: 16655124

L, Br J Appl Phys 9(9), 1958
Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.
Huber GW, Iborra S, Corma A., Chem. Rev. 106(9), 2006
PMID: 16967928

AUTHOR UNKNOWN, 0
Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors.
Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML., Bioresour. Technol. 101(4), 2009
PMID: 19800784
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118
Life-cycle assessment of biodiesel production from microalgae.
Lardon L, Helias A, Sialve B, Steyer JP, Bernard O., Environ. Sci. Technol. 43(17), 2009
PMID: 19764204

K, Energy Convers Manage 36(6–9), 1995

JC, Chem Eng Sci 62(24), 2007

E, Biotechnol Adv 20(7–8), 2003
Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B., Plant Biotechnol. J. 5(6), 2007
PMID: 17764518

M, Appl Biochem Biotechnol 28–9(), 1991

M, Appl Biochem Biotechnol 39(), 1993
Simulations of light intensity variation in photobioreactors.
Perner-Nochta I, Posten C., J. Biotechnol. 131(3), 2007
PMID: 17681391

C, Eng Life Sci 9(3), 2009

AUTHOR UNKNOWN, 0
Do biofuels from microalgae beat biofuels from terrestrial plants?
Reijnders L., Trends Biotechnol. 26(7), 2008
PMID: 18486252
Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor.
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR., Biotechnol. Bioeng. 102(1), 2009
PMID: 18683258

N, Aquacultural Eng 20(3), 1999

AUTHOR UNKNOWN, 0

E, Chem Eng J 138(1–3), 2008

AUTHOR UNKNOWN, 0
The Effects of Light Intensity on the Growth Rates of Green Algae.
Sorokin C, Krauss RW., Plant Physiol. 33(2), 1958
PMID: 16655087

U, 2008
An economic and technical evaluation of microalgal biofuels.
Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B., Nat. Biotechnol. 28(2), 2010
PMID: 20139944

AUTHOR UNKNOWN, 0

MR, Biofuels 1(1), 2010

AUTHOR UNKNOWN, 0

KM, Bioenergy Res 3(2), 2010

C, Bioresour Technol 101(), 2010
What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
Zhu XG, Long SP, Ort DR., Curr. Opin. Biotechnol. 19(2), 2008
PMID: 18374559

JWF, Mar Biotechnol 10(4), 2008

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20535467
PubMed | Europe PMC

Suchen in

Google Scholar