Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation

Regtmeier J, Eichhorn R, Bogunovic L, Ros A, Anselmetti D (2010)
Analytical Chemistry 82(17): 7141-7149.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract / Notes
Dielectrophoresis is a convenient tool for controlled manipulation of DNA with numerous applications, including DNA trapping, stretching, and separation. However, the mechanisms behind the dielectrophoretic properties of DNA are still under debate, and the role of conformation has not been addressed yet. Here, we quantify dielectrophoretic effects on DNA by determining its polarizability from microfluidic single molecule trapping experiments. We systematically study different DNA configurations (linear and supercoiled, 6-164 kbp) and demonstrate that the polarizability strongly depends on the specific conformation and size of the DNA molecules. The connection to its spatial extension is established by measuring diffusion coefficients and from that the radii of gyration; details about the spatial DNA structure are obtained from atomic force microscopy images. For linear and supercoiled DNA fragments, we found a power-law scaling for the polarizabilities and the diffusion coefficients. Our results imply a scaling of the polarizability with the radius of gyration, alpha similar to R-g(0.9) (+/-) (0.1) and alpha similar to R-g(1.6) (+/-) (0.2) for linear and supercoiled DNA, respectively. As an application, we demonstrate the separation of DNA topoisomers based on their dielectrophoretic properties, achieving baseline resolution within 210 s. Purified DNA samples of specific configuration may be of great importance for DNA nanoassembly or future DNA vaccines.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Regtmeier J, Eichhorn R, Bogunovic L, Ros A, Anselmetti D. Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry. 2010;82(17):7141-7149.
Regtmeier, J., Eichhorn, R., Bogunovic, L., Ros, A., & Anselmetti, D. (2010). Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry, 82(17), 7141-7149. doi:10.1021/ac1005475
Regtmeier, J., Eichhorn, R., Bogunovic, L., Ros, A., and Anselmetti, D. (2010). Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry 82, 7141-7149.
Regtmeier, J., et al., 2010. Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry, 82(17), p 7141-7149.
J. Regtmeier, et al., “Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation”, Analytical Chemistry, vol. 82, 2010, pp. 7141-7149.
Regtmeier, J., Eichhorn, R., Bogunovic, L., Ros, A., Anselmetti, D.: Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry. 82, 7141-7149 (2010).
Regtmeier, Jan, Eichhorn, Ralf, Bogunovic, Lukas, Ros, Alexandra, and Anselmetti, Dario. “Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation”. Analytical Chemistry 82.17 (2010): 7141-7149.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 Citations in Europe PMC

Data provided by Europe PubMed Central.

DNA dielectrophoresis: Theory and applications a review.
Viefhues M, Eichhorn R., Electrophoresis 38(11), 2017
PMID: 28306161
Reaching for the limits in continuous-flow dielectrophoretic DNA analysis.
Täuber S, Kunze L, Grauberger O, Grundmann A, Viefhues M., Analyst 142(24), 2017
PMID: 29119187
Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping.
Freedman KJ, Otto LM, Ivanov AP, Barik A, Oh SH, Edel JB., Nat Commun 7(), 2016
PMID: 26732171
Screen-printed microfluidic dielectrophoresis chip for cell separation.
Zhu H, Lin X, Su Y, Dong H, Wu J., Biosens Bioelectron 63(), 2015
PMID: 25127471
Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices.
Nakano A, Camacho-Alanis F, Ros A., Analyst 140(3), 2015
PMID: 25479537
Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching.
Dorfman KD, King SB, Olson DW, Thomas JD, Tree DR., Chem Rev 113(4), 2013
PMID: 23140825
Dielectrophoresis of lambda-DNA using 3D carbon electrodes.
Martinez-Duarte R, Camacho-Alanis F, Renaud P, Ros A., Electrophoresis 34(7), 2013
PMID: 23348619
Protein dielectrophoresis: advances, challenges, and applications.
Nakano A, Ros A., Electrophoresis 34(7), 2013
PMID: 23400789
Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis.
Viefhues M, Eichhorn R, Fredrich E, Regtmeier J, Anselmetti D., Lab Chip 12(3), 2012
PMID: 22193706
Tuning direct current streaming dielectrophoresis of proteins.
Nakano A, Camacho-Alanis F, Chao TC, Ros A., Biomicrofluidics 6(3), 2012
PMID: 23908679
Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules.
Camacho-Alanis F, Gan L, Ros A., Sens Actuators B Chem 173(), 2012
PMID: 23441049
Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device.
Nakano A, Chao TC, Camacho-Alanis F, Ros A., Electrophoresis 32(17), 2011
PMID: 21792990
Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules.
Gencoglu A, Camacho-Alanis F, Nguyen VT, Nakano A, Ros A, Minerick AR., Electrophoresis 32(18), 2011
PMID: 21874654
Dielectrophoresis in microfluidics technology.
Cetin B, Li D., Electrophoresis 32(18), 2011
PMID: 21922491
Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications.
Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D., Electrophoresis 32(17), 2011
PMID: 23361920

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20690609
PubMed | Europe PMC

Search this title in

Google Scholar