Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons

Borst A, Egelhaaf M, Haag J (1995)
Journal of Computational Neuroscience 2(1): 5-18.

Download
OA
Journal Article | Published | English
Author
; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Borst A, Egelhaaf M, Haag J. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience. 1995;2(1):5-18.
Borst, A., Egelhaaf, M., & Haag, J. (1995). Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience, 2(1), 5-18.
Borst, A., Egelhaaf, M., and Haag, J. (1995). Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience 2, 5-18.
Borst, A., Egelhaaf, M., & Haag, J., 1995. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience, 2(1), p 5-18.
A. Borst, M. Egelhaaf, and J. Haag, “Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons”, Journal of Computational Neuroscience, vol. 2, 1995, pp. 5-18.
Borst, A., Egelhaaf, M., Haag, J.: Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience. 2, 5-18 (1995).
Borst, Alexander, Egelhaaf, Martin, and Haag, Jürgen. “Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons”. Journal of Computational Neuroscience 2.1 (1995): 5-18.
Main File(s)
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

38 Citations in Europe PMC

Data provided by Europe PubMed Central.

Neural circuits for elementary motion detection.
Borst A., J. Neurogenet. 28(3-4), 2014
PMID: 24605814
Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths.
Dunbier JR, Wiederman SD, Shoemaker PA, O'Carroll DC., Front Neural Circuits 6(), 2012
PMID: 23112764
Contrast-independent biologically inspired motion detection.
Babies B, Lindemann JP, Egelhaaf M, Moller R., Sensors (Basel) 11(3), 2011
PMID: 22163800
A neuronally based model of contrast gain adaptation in fly motion vision.
Rivera-Alvidrez Z, Lin I, Higgins CM., Vis. Neurosci. 28(5), 2011
PMID: 21854701
Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.
Shoemaker PA, Hyslop AM, Humbert JS., Biol Cybern 104(4-5), 2011
PMID: 21626306
Spatiotemporal response properties of optic-flow processing neurons.
Weber F, Machens CK, Borst A., Neuron 67(4), 2010
PMID: 20797539
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdorfer B, Egelhaaf M., Eur. J. Neurosci. 30(4), 2009
PMID: 19674090
Bio-inspired motion detection in an FPGA-based smart camera module.
Kohler T, Rochter F, Lindemann JP, Moller R., Bioinspir Biomim 4(1), 2009
PMID: 19258686
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534

36 References

Data provided by Europe PubMed Central.


M, J. Comp. Physiol. 124(), 1978

R, J. Comp. Physiol. A 149(), 1982

R, J. Comp. Physiol. A 149(), 1982
A look into the cock-pit of the fly. The architecture of the lobular plate.
Pierantoni R., Cell Tissue Res. 171(1), 1976
PMID: 963732

T, Naturwiss 443(), 1981

W, 1961

W, Biol. Cybern. 46(), 1983
Evaluation of optical motion information by movement detectors.
Reichardt W., J. Comp. Physiol. A 161(4), 1987
PMID: 3681769

A, Biol. Cybern. 59(), 1988

I, 1989

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 8521280
PubMed | Europe PMC

Search this title in

Google Scholar