Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons

Borst A, Egelhaaf M, Haag J (1995)
Journal of Computational Neuroscience 2(1): 5-18.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ;
Erscheinungsjahr
Zeitschriftentitel
Journal of Computational Neuroscience
Band
2
Zeitschriftennummer
1
Seite
5-18
ISSN
eISSN
PUB-ID

Zitieren

Borst A, Egelhaaf M, Haag J. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience. 1995;2(1):5-18.
Borst, A., Egelhaaf, M., & Haag, J. (1995). Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience, 2(1), 5-18. doi:10.1007/BF00962705
Borst, A., Egelhaaf, M., and Haag, J. (1995). Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience 2, 5-18.
Borst, A., Egelhaaf, M., & Haag, J., 1995. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience, 2(1), p 5-18.
A. Borst, M. Egelhaaf, and J. Haag, “Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons”, Journal of Computational Neuroscience, vol. 2, 1995, pp. 5-18.
Borst, A., Egelhaaf, M., Haag, J.: Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. Journal of Computational Neuroscience. 2, 5-18 (1995).
Borst, Alexander, Egelhaaf, Martin, and Haag, Jürgen. “Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons”. Journal of Computational Neuroscience 2.1 (1995): 5-18.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z

58 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multi-stability with ambiguous visual stimuli in Drosophila orientation behavior.
Toepfer F, Wolf R, Heisenberg M., PLoS Biol 16(2), 2018
PMID: 29438378
The optomotor response of the praying mantis is driven predominantly by the central visual field.
Nityananda V, Tarawneh G, Errington S, Serrano-Pedraza I, Read J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(1), 2017
PMID: 28005254
Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Neural circuits for elementary motion detection.
Borst A., J Neurogenet 28(3-4), 2014
PMID: 24605814
In search of the Holy Grail of fly motion vision.
Borst A., Eur J Neurosci 40(9), 2014
PMID: 25251169
Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths.
Dunbier JR, Wiederman SD, Shoemaker PA, O'Carroll DC., Front Neural Circuits 6(), 2012
PMID: 23112764
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Contrast-independent biologically inspired motion detection.
Babies B, Lindemann JP, Egelhaaf M, Möller R., Sensors (Basel) 11(3), 2011
PMID: 22163800
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.
Shoemaker PA, Hyslop AM, Humbert JS., Biol Cybern 104(4-5), 2011
PMID: 21626306
A neuronally based model of contrast gain adaptation in fly motion vision.
Rivera-Alvidrez Z, Lin I, Higgins CM., Vis Neurosci 28(5), 2011
PMID: 21854701
Seeing things in motion: models, circuits, and mechanisms.
Borst A, Euler T., Neuron 71(6), 2011
PMID: 21943597
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu Rev Neurosci 33(), 2010
PMID: 20225934
Processing of horizontal optic flow in three visual interneurons of the Drosophila brain.
Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF., J Neurophysiol 103(3), 2010
PMID: 20089816
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordström K, O'Carroll DC., Curr Biol 20(11), 2010
PMID: 20537540
Spatiotemporal response properties of optic-flow processing neurons.
Weber F, Machens CK, Borst A., Neuron 67(4), 2010
PMID: 20797539
Synaptic organization of lobula plate tangential cells in Drosophila: Dalpha7 cholinergic receptors.
Raghu SV, Joesch M, Sigrist SJ, Borst A, Reiff DF., J Neurogenet 23(1-2), 2009
PMID: 19306209
Bio-inspired motion detection in an FPGA-based smart camera module.
Köhler T, Röchter F, Lindemann JP, Möller R., Bioinspir Biomim 4(1), 2009
PMID: 19258686
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput Biol 5(11), 2009
PMID: 19893631
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Möller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
A canonical neural circuit for cortical nonlinear operations.
Kouh M, Poggio T., Neural Comput 20(6), 2008
PMID: 18254695
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc Natl Acad Sci U S A 104(24), 2007
PMID: 17551009
Adaptation and information transmission in fly motion detection.
Safran MN, Flanagin VL, Borst A, Sompolinsky H., J Neurophysiol 98(6), 2007
PMID: 17928564
Adaptation without parameter change: Dynamic gain control in motion detection.
Borst A, Flanagin VL, Sompolinsky H., Proc Natl Acad Sci U S A 102(17), 2005
PMID: 15833815
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12), 2005
PMID: 16133502
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res 43(7), 2003
PMID: 12639604
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res 43(11), 2003
PMID: 12726836
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc Natl Acad Sci U S A 100(19), 2003
PMID: 12947039
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J Neurophysiol 85(2), 2001
PMID: 11160507
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
A silicon implementation of the fly's optomotor control system.
Harrison RR, Koch C., Neural Comput 12(10), 2000
PMID: 11032035
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367

36 References

Daten bereitgestellt von Europe PubMed Central.


A, Biol. Cybern. 55(), 1986

A, Trends Neumsci. 12(), 1989

A, Proc. Natl. Acad. Sci. USA 87(), 1990

A, Proc. Natl. Acad. Sci. USA 89(), 1992

A, 1993

E, 1984
Summation and division by neurons in primate visual cortex.
Carandini M, Heeger DJ., Science 264(5163), 1994
PMID: 8191289

DR, J. Comp. Physiol. 100(), 1975

M, Biol. Cybern. 52(), 1985

M, J. Opt. Soc. Am. A 6(), 1989
The role of GABA in detecting visual motion.
Egelhaaf M, Borst A, Pilz B., Brain Res. 509(1), 1990
PMID: 2306632

M, J. Opt. Soc. Am. A 6(), 1989

M, 1993

G, Biol. Cybern. 44(), 1982

C, 2. Naturforsch. 45c(), 1991

KG, Bibl. Ophthal. 82(), 1972
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773

AUTHOR UNKNOWN, 0

J, 1994

K, Z. Naturforsch. 31c(), 1976

K, Biol. Cybern. 46(), 1982

K, Proc. R. Soc. Lond. B 219(), 1983

K, J. Neumsci. 10(), 1990

M, J. Comp. Physiol. 124(), 1978

R, J. Comp. Physiol. A 149(), 1982

R, J. Comp. Physiol. A 149(), 1982
A look into the cock-pit of the fly. The architecture of the lobular plate.
Pierantoni R., Cell Tissue Res. 171(1), 1976
PMID: 963732

T, Naturwiss 443(), 1981

W, 1961

W, Biol. Cybern. 46(), 1983
Evaluation of optical motion information by movement detectors.
Reichardt W., J. Comp. Physiol. A 161(4), 1987
PMID: 3681769

A, Biol. Cybern. 59(), 1988

I, 1989

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 8521280
PubMed | Europe PMC

Suchen in

Google Scholar