SAMPI: protein identification with mass spectra alignments

Kaltenbach H-M, Wilke A, Böcker S (2007)
BMC Bioinformatics 8(1).

Download
OA
Journal Article | Published | English
Author
; ;
Abstract
Background: Mass spectrometry based peptide mass fingerprints (PMFs) offer a fast, efficient, and robust method for protein identification. A protein is digested (usually by trypsin) and its mass spectrum is compared to simulated spectra for protein sequences in a database. However, existing tools for analyzing PMFs often suffer from missing or heuristic analysis of the significance of search results and insufficient handling of missing and additional peaks. Results: We present an unified framework for analyzing Peptide Mass Fingerprints that offers a number of advantages over existing methods: First, comparison of mass spectra is based on a scoring function that can be custom-designed for certain applications and explicitly takes missing and additional peaks into account. The method is able to simulate almost every additive scoring scheme. Second, we present an efficient deterministic method for assessing the significance of a protein hit, independent of the underlying scoring function and sequence database. We prove the applicability of our approach using biological mass spectrometry data and compare our results to the standard software Mascot. Conclusion: The proposed framework for analyzing Peptide Mass Fingerprints shows performance comparable to Mascot on small peak lists. Introducing more noise peaks, we are able to keep identification rates at a similar level by using the flexibility introduced by scoring schemes.
Publishing Year
ISSN
PUB-ID

Cite this

Kaltenbach H-M, Wilke A, Böcker S. SAMPI: protein identification with mass spectra alignments. BMC Bioinformatics. 2007;8(1).
Kaltenbach, H. - M., Wilke, A., & Böcker, S. (2007). SAMPI: protein identification with mass spectra alignments. BMC Bioinformatics, 8(1).
Kaltenbach, H. - M., Wilke, A., and Böcker, S. (2007). SAMPI: protein identification with mass spectra alignments. BMC Bioinformatics 8.
Kaltenbach, H.-M., Wilke, A., & Böcker, S., 2007. SAMPI: protein identification with mass spectra alignments. BMC Bioinformatics, 8(1).
H.-M. Kaltenbach, A. Wilke, and S. Böcker, “SAMPI: protein identification with mass spectra alignments”, BMC Bioinformatics, vol. 8, 2007.
Kaltenbach, H.-M., Wilke, A., Böcker, S.: SAMPI: protein identification with mass spectra alignments. BMC Bioinformatics. 8, (2007).
Kaltenbach, Hans-Michael, Wilke, Andreas, and Böcker, Sebastian. “SAMPI: protein identification with mass spectra alignments”. BMC Bioinformatics 8.1 (2007).
Main File(s)
File Name
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

Feature-matching pattern-based support vector machines for robust peptide mass fingerprinting.
Li Y, Hao P, Zhang S, Li Y., Mol. Cell Proteomics 10(12), 2011
PMID: 21775775
A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language.
Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A., Genome Biol. 12(1), 2011
PMID: 21247462

22 References

Data provided by Europe PubMed Central.

Mass spectrometry-based proteomics.
Aebersold R, Mann M., Nature 422(6928), 2003
PMID: 12634793
The SWISS-PROT protein sequence data bank.
Bairoch A, Boeckmann B., Nucleic Acids Res. 20 Suppl(), 1992
PMID: 1598233
Protein identification: the origins of peptide mass fingerprinting.
Henzel WJ, Watanabe C, Stults JT., J. Am. Soc. Mass Spectrom. 14(9), 2003
PMID: 12954162
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data.
Chamrad DC, Korting G, Stuhler K, Meyer HE, Klose J, Bluggel M., Proteomics 4(3), 2004
PMID: 14997485
Mass Spectra Alignments and Their Significance
Böcker S, Kaltenbach HM., 2005
Statistics of cleavage fragments in random weighted strings
Kaltenbach HM, Sudek H, Böcker S, Rahmann S., 2005
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Intensity-based statistical scorer for tandem mass spectrometry.
Havilio M, Haddad Y, Smilansky Z., Anal. Chem. 75(3), 2003
PMID: 12585468
Bioinformatics support for high-throughput proteomics.
Wilke A, Ruckert C, Bartels D, Dondrup M, Goesmann A, Huser AT, Kespohl S, Linke B, Mahne M, McHardy A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651857

Gusfield D., 1997
Dynamic programming algorithms for restriction map comparison.
Huang X, Waterman MS., Comput. Appl. Biosci. 8(5), 1992
PMID: 1422885
Applying an Edit Distance to the Matching of Tree Ring Sequences in Dendrochronology
Wenk C., 1999
Peptide mass fingerprinting peak intensity prediction: extracting knowledge from spectra.
Gay S, Binz PA, Hochstrasser DF, Appel RD., Proteomics 2(10), 2002
PMID: 12422355
SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database.
Bafna V, Edwards N., Bioinformatics 17 Suppl 1(), 2001
PMID: 11472988
PepHMM: A Hidden Markov Model Based Scoring Function for Mass Spectrometry Database Search
Wan Y, Yang A, Chen T., 2005
Deriving statistical models for predicting peptide tandem MS product ion intensities.
Schutz F, Kapp EA, Simpson RJ, Speed TP., Biochem. Soc. Trans. 31(Pt 6), 2003
PMID: 14641094
Transformation and other factors of the peptide mass spectrometry pairwise peak-list comparison process.
Wolski WE, Lalowski M, Martus P, Herwig R, Giavalisco P, Gobom J, Sickmann A, Lehrach H, Reinert K., BMC Bioinformatics 6(), 2005
PMID: 16318636

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17386090
PubMed | Europe PMC

Search this title in

Google Scholar