Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis

Schöning JC, Streitner C, Meyer IM, Gao Y, Staiger D (2008)
Nucleic Acids Research 36(22): 6977-6987.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
The Arabidopsis RNA-binding protein AtGRP8 undergoes negative autoregulation at the post-transcriptional level. An elevated AtGRP8 protein level promotes the use of a cryptic 5´ splice site to generate an alternatively spliced transcript, as_AtGRP8, retaining the 5´ half of the intron with a premature termination codon. In mutants defective in nonsense-mediated decay (NMD) abundance of as_AtGRP8 but not its pre-mRNA is elevated, indicating that as_AtGRP8 is a direct NMD target, thus limiting the production of functional AtGRP8 protein. In addition to its own pre-mRNA, AtGRP8 negatively regulates the AtGRP7 transcript through promoting the formation of the equivalent alternatively spliced as_AtGRP7 transcript, leading to a decrease in AtGRP7 abundance. Recombinant AtGRP8 binds to its own and the AtGRP7 pre-mRNA, suggesting that this interaction is relevant for the splicing decision in vivo. AtGRP7 itself is part of a negative autoregulatory circuit that influences circadian oscillations of its own and the AtGRP8 transcript through alternative splicing linked to NMD. Thus, we identify an interlocked feedback loop through which two RNA-binding proteins autoregulate and reciprocally crossregulate by coupling unproductive splicing to NMD. A high degree of evolutionary sequence conservation in the introns retained in as_AtGRP8 or as_AtGRP7 points to an important function of these sequences.
Erscheinungsjahr
Zeitschriftentitel
Nucleic Acids Research
Band
36
Zeitschriftennummer
22
Seite
6977-6987
ISSN
eISSN
PUB-ID

Zitieren

Schöning JC, Streitner C, Meyer IM, Gao Y, Staiger D. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research. 2008;36(22):6977-6987.
Schöning, J. C., Streitner, C., Meyer, I. M., Gao, Y., & Staiger, D. (2008). Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research, 36(22), 6977-6987. doi:10.1093/nar/gkn847
Schöning, J. C., Streitner, C., Meyer, I. M., Gao, Y., and Staiger, D. (2008). Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research 36, 6977-6987.
Schöning, J.C., et al., 2008. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research, 36(22), p 6977-6987.
J.C. Schöning, et al., “Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis”, Nucleic Acids Research, vol. 36, 2008, pp. 6977-6987.
Schöning, J.C., Streitner, C., Meyer, I.M., Gao, Y., Staiger, D.: Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research. 36, 6977-6987 (2008).
Schöning, Jan C., Streitner, Corinna, Meyer, Irmtraud M., Gao, Yahong, and Staiger, Dorothee. “Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis”. Nucleic Acids Research 36.22 (2008): 6977-6987.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-11-07T09:24:15Z

68 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Spotlight on post-transcriptional control in the circadian system.
Staiger D, Köster T., Cell Mol Life Sci 68(1), 2011
PMID: 20803230
Post-transcriptional control of circadian rhythms.
Kojima S, Shingle DL, Green CB., J Cell Sci 124(pt 3), 2011
PMID: 21242310
Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.
Zhang L, Weng W, Guo J., FEBS Lett 585(10), 2011
PMID: 21414314
Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana.
Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JW, Jarmolowski A., Nucleic Acids Res 38(1), 2010
PMID: 19864257
Functional diversity of the plant glycine-rich proteins superfamily.
Mangeon A, Junqueira RM, Sachetto-Martins G., Plant Signal Behav 5(2), 2010
PMID: 20009520
Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii.
Labadorf A, Link A, Rogers MF, Thomas J, Reddy AS, Ben-Hur A., BMC Genomics 11(), 2010
PMID: 20163725
How the green alga Chlamydomonas reinhardtii keeps time.
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M., Protoplasma 244(1-4), 2010
PMID: 20174954
Post-transcriptional controls - adding a new layer of regulation to clock gene expression.
Cibois M, Gautier-Courteille C, Legagneux V, Paillard L., Trends Cell Biol 20(9), 2010
PMID: 20630760
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol 10(), 2010
PMID: 20946635
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing.
Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S, Cao X., Proc Natl Acad Sci U S A 107(44), 2010
PMID: 20956294
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Godoy Herz MA, Depetris-Chauvin A, Simpson CG, Brown JW, Cerdán PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ., Nature 468(7320), 2010
PMID: 20962777
Network news: prime time for systems biology of the plant circadian clock.
McClung CR, Gutiérrez RA., Curr Opin Genet Dev 20(6), 2010
PMID: 20889330
Selective recruitment of proteins to 5' cap complexes during the growth cycle in Arabidopsis.
Bush MS, Hutchins AP, Jones AM, Naldrett MJ, Jarmolowski A, Lloyd CW, Doonan JH., Plant J 59(3), 2009
PMID: 19453450
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys J 96(12), 2009
PMID: 19527663
Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner.
Nyikó T, Sonkoly B, Mérai Z, Benkovics AH, Silhavy D., Plant Mol Biol 71(4-5), 2009
PMID: 19653106

48 References

Daten bereitgestellt von Europe PubMed Central.

Identification of molecular contacts between the U1 A small nuclear ribonucleoprotein and U1 RNA.
Jessen TH, Oubridge C, Teo CH, Pritchard C, Nagai K., EMBO J. 10(11), 1991
PMID: 1833186
Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A.
Nagai K, Oubridge C, Jessen TH, Li J, Evans PR., Nature 348(6301), 1990
PMID: 2147232
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W., Plant Physiol. 136(1), 2004
PMID: 15375207
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA., Science 290(5499), 2000
PMID: 11118138
The Arabidopsis splicing factor SR1 is regulated by alternative splicing.
Lazar G, Goodman HM., Plant Mol. Biol. 42(4), 2000
PMID: 10809003
Nonsense-mediated mRNA decay: Target genes and functional diversification of effectors.
Rehwinkel J, Raes J, Izaurralde E., Trends Biochem. Sci. 31(11), 2006
PMID: 17010613
Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast.
Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR., PLoS Genet. 2(11), 2006
PMID: 17166056
UPF3 suppresses aberrant spliced mRNA in Arabidopsis.
Hori K, Watanabe Y., Plant J. 43(4), 2005
PMID: 16098107
UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis.
Arciga-Reyes L, Wootton L, Kieffer M, Davies B., Plant J. 47(3), 2006
PMID: 16813578
SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs.
Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J., EMBO J. 20(7), 2001
PMID: 11285241
A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons.
Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black DL., Genes Dev. 21(13), 2007
PMID: 17606642
Sequence and expression of a gene encoding a protein with RNA-binding and glycine-rich domains in Brassica napus.
Bergeron D, Beauseigle D, Bellemare G., Biochim. Biophys. Acta 1216(1), 1993
PMID: 7916642
Characterization of circadian-regulated mRNAs encoding glycine-rich RNA-binding proteins in Pelargonium hortorum
Clark DG, Richards C, Brown KM., 1999

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18987006
PubMed | Europe PMC

Suchen in

Google Scholar