KnotInFrame: prediction of –1 ribosomal frameshift events

Theis C, Reeder J, Giegerich R (2008)
Nucleic Acids Research 36(18): 6013-6020.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ;
Abstract / Bemerkung
Programmed –1 ribosomal frameshift (–1 PRF) allows for alternative reading frames within one mRNA. First found in several viruses, it is now believed to exist in all kingdoms of life. Strong stimulators for –1 PRF are a heptameric slippery site and an RNA pseudoknot. Here, we present a new algorithm KnotInFrame, for the automatic detection of –1 PRF signals from genomic sequences. It finds the frameshifting stimulators by means of a specialized RNA-pseudoknot folding program, fast enough for genome-wide analyses. Evaluations on known –1 PRF signals demonstrate a high sensitivity.
Erscheinungsjahr
Zeitschriftentitel
Nucleic Acids Research
Band
36
Zeitschriftennummer
18
Seite
6013-6020
ISSN
eISSN
PUB-ID

Zitieren

Theis C, Reeder J, Giegerich R. KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research. 2008;36(18):6013-6020.
Theis, C., Reeder, J., & Giegerich, R. (2008). KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research, 36(18), 6013-6020. doi:10.1093/nar/gkn578
Theis, C., Reeder, J., and Giegerich, R. (2008). KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research 36, 6013-6020.
Theis, C., Reeder, J., & Giegerich, R., 2008. KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research, 36(18), p 6013-6020.
C. Theis, J. Reeder, and R. Giegerich, “KnotInFrame: prediction of –1 ribosomal frameshift events”, Nucleic Acids Research, vol. 36, 2008, pp. 6013-6020.
Theis, C., Reeder, J., Giegerich, R.: KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research. 36, 6013-6020 (2008).
Theis, Corinna, Reeder, Jens, and Giegerich, Robert. “KnotInFrame: prediction of –1 ribosomal frameshift events”. Nucleic Acids Research 36.18 (2008): 6013-6020.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z

29 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene.
Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P, Jones JE, Khan Y, Briggs J, Dinman JD, Vázquez-Laslop N, Mankin AS., Mol Cell 65(2), 2017
PMID: 28107647
Complete genome sequences of cowpea polerovirus 1 and cowpea polerovirus 2 infecting cowpea plants in Burkina Faso.
Palanga E, Martin DP, Galzi S, Zabré J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P, Filloux D., Arch Virol 162(7), 2017
PMID: 28337544
Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV., Nucleic Acids Res 44(15), 2016
PMID: 27436286
The RNA shapes studio.
Janssen S, Giegerich R., Bioinformatics 31(3), 2015
PMID: 25273103
Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting.
Caliskan N, Peske F, Rodnina MV., Trends Biochem Sci 40(5), 2015
PMID: 25850333
Characterization of the Complete Genome of a Novel Polerovirus Infecting Sauropus androgynus in Thailand
Knierim D, Maiss E, Menzel W, Winter S, Kenyon L., Journal of phytopathology. 163(9), 2015
PMID: IND603502138
A high-definition view of functional genetic variation from natural yeast genomes.
Bergström A, Simpson JT, Salinas F, Barré B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G., Mol Biol Evol 31(4), 2014
PMID: 24425782
Molecular characterization and phylogenetic analysis of the genome of porcine torovirus.
Sun H, Lan D, Lu L, Chen M, Wang C, Hua X., Arch Virol 159(4), 2014
PMID: 24122107
Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli.
Sharma V, Prère MF, Canal I, Firth AE, Atkins JF, Baranov PV, Fayet O., Nucleic Acids Res 42(11), 2014
PMID: 24875478
Retrotransposon Ty1 RNA contains a 5'-terminal long-range pseudoknot required for efficient reverse transcription.
Huang Q, Purzycka KJ, Lusvarghi S, Li D, Legrice SF, Boeke JD., RNA 19(3), 2013
PMID: 23329695
Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication.
Nakano K, Ando T, Yamagishi M, Yokoyama K, Ishida T, Ohsugi T, Tanaka Y, Brighty DW, Watanabe T., Microbes Infect 15(6-7), 2013
PMID: 23541980
Ligand-inducible formation of RNA pseudoknot.
Matsumoto S, Hong C, Otabe T, Murata A, Nakatani K., Bioorg Med Chem Lett 23(12), 2013
PMID: 23664873
Identification of the nature of reading frame transitions observed in prokaryotic genomes.
Antonov I, Coakley A, Atkins JF, Baranov PV, Borodovsky M., Nucleic Acids Res 41(13), 2013
PMID: 23649834
HTLV-1 Rex: the courier of viral messages making use of the host vehicle.
Nakano K, Watanabe T., Front Microbiol 3(), 2012
PMID: 22973269
Strain-specific copy number variation in the intelectin locus on the 129 mouse chromosome 1.
Lu ZH, di Domenico A, Wright SH, Knight PA, Whitelaw CB, Pemberton AD., BMC Genomics 12(), 2011
PMID: 21324158
Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives.
Ahmed F, Benedito VA, Zhao PX., Front Plant Sci 2(), 2011
PMID: 22639614
Recode-2: new design, new search tools, and many more genes.
Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV., Nucleic Acids Res 38(database issue), 2010
PMID: 19783826
DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model.
Sperschneider J, Datta A., Nucleic Acids Res 38(7), 2010
PMID: 20123730
Genetack: frameshift identification in protein-coding sequences by the Viterbi algorithm.
Antonov I, Borodovsky M., J Bioinform Comput Biol 8(3), 2010
PMID: 20556861
Parallel germline infiltration of a lentivirus in two Malagasy lemurs.
Gilbert C, Maxfield DG, Goodman SM, Feschotte C., PLoS Genet 5(3), 2009
PMID: 19300488

30 References

Daten bereitgestellt von Europe PubMed Central.

Genetic Control of Biochemical Reactions in Neurospora.
Beadle GW, Tatum EL., Proc. Natl. Acad. Sci. U.S.A. 27(11), 1941
PMID: 16588492
Trans-splicing of nematode premessenger RNA
Nilsen TW., 1993
Coupling of open reading frames by translational bypassing.
Herr AJ, Atkins JF, Gesteland RF., Annu. Rev. Biochem. 69(), 2000
PMID: 10966462
A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I., Nature 441(7090), 2006
PMID: 16688178
The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift.
Leger M, Dulude D, Steinberg SV, Brakier-Gingras L., Nucleic Acids Res. 35(16), 2007
PMID: 17704133
Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases.
Hammell AB, Taylor RC, Peltz SW, Dinman JD., Genome Res. 9(5), 1999
PMID: 10330121
Predicting genes expressed via -1 and +1 frameshifts.
Moon S, Byun Y, Kim HJ, Jeong S, Han K., Nucleic Acids Res. 32(16), 2004
PMID: 15371551
Towards a computational model for -1 eukaryotic frameshifting sites.
Bekaert M, Bidou L, Denise A, Duchateau-Nguyen G, Forest JP, Froidevaux C, Hatin I, Rousset JP, Termier M., Bioinformatics 19(3), 2003
PMID: 12584117
RNAMotif, an RNA secondary structure definition and search algorithm.
Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R., Nucleic Acids Res. 29(22), 2001
PMID: 11713323
RECODE 2003.
Baranov PV, Gurvich OL, Hammer AW, Gesteland RF, Atkins JF., Nucleic Acids Res. 31(1), 2003
PMID: 12519954
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
Plant EP, Perez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD., PLoS Biol. 3(6), 2005
PMID: 15884978
Fast folding and comparison of RNA secondary structures
Hofacker I, Fontana W, Stadler P, Bonhoeffer S, Tacker M, Schuster P., 1994
Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics
Reeder J, Giegerich R., 2004
pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows.
Reeder J, Steffen P, Giegerich R., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17478505
Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
Mathews DH, Sabina J, Zuker M, Turner DH., J. Mol. Biol. 288(5), 1999
PMID: 10329189
A discipline of dynamic programming over sequence data
Giegerich R, Meyer C, Steffen P., 2004
Versatile and declarative dynamic programming using pair algebras
Steffen P, Giegerich R., 2005
Challenges in the compilation of a domain specific language for dynamic programming.
Giegerich R, Steffen P., 2006
Compiling a domain specific language for dynamic programming.
Steffen P., 2006
PseudoBase: structural information on RNA pseudoknots.
van Batenburg FH, Gultyaev AP, Pleij CW., Nucleic Acids Res. 29(1), 2001
PMID: 11125088
Thermodynamic matchers: strengthening the significance of RNA folding energies
Höchsmann T, Höchsmann M, Giegerich R., 2006
PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals.
Belew AT, Hepler NL, Jacobs JL, Dinman JD., BMC Genomics 9(), 2008
PMID: 18637175
Locomotif: from graphical motif description to RNA motif search.
Reeder J, Reeder J, Giegerich R., Bioinformatics 23(13), 2007
PMID: 17646322

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18820303
PubMed | Europe PMC

Suchen in

Google Scholar