KnotInFrame: prediction of –1 ribosomal frameshift events

Theis C, Reeder J, Giegerich R (2008)
Nucleic Acids Research 36(18): 6013-6020.

Download
OA
Journal Article | Published | English
Author
; ;
Abstract
Programmed –1 ribosomal frameshift (–1 PRF) allows for alternative reading frames within one mRNA. First found in several viruses, it is now believed to exist in all kingdoms of life. Strong stimulators for –1 PRF are a heptameric slippery site and an RNA pseudoknot. Here, we present a new algorithm KnotInFrame, for the automatic detection of –1 PRF signals from genomic sequences. It finds the frameshifting stimulators by means of a specialized RNA-pseudoknot folding program, fast enough for genome-wide analyses. Evaluations on known –1 PRF signals demonstrate a high sensitivity.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Theis C, Reeder J, Giegerich R. KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research. 2008;36(18):6013-6020.
Theis, C., Reeder, J., & Giegerich, R. (2008). KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research, 36(18), 6013-6020.
Theis, C., Reeder, J., and Giegerich, R. (2008). KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research 36, 6013-6020.
Theis, C., Reeder, J., & Giegerich, R., 2008. KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research, 36(18), p 6013-6020.
C. Theis, J. Reeder, and R. Giegerich, “KnotInFrame: prediction of –1 ribosomal frameshift events”, Nucleic Acids Research, vol. 36, 2008, pp. 6013-6020.
Theis, C., Reeder, J., Giegerich, R.: KnotInFrame: prediction of –1 ribosomal frameshift events. Nucleic Acids Research. 36, 6013-6020 (2008).
Theis, Corinna, Reeder, Jens, and Giegerich, Robert. “KnotInFrame: prediction of –1 ribosomal frameshift events”. Nucleic Acids Research 36.18 (2008): 6013-6020.
Main File(s)
File Name
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

20 Citations in Europe PMC

Data provided by Europe PubMed Central.

Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting.
Caliskan N, Peske F, Rodnina MV., Trends Biochem. Sci. 40(5), 2015
PMID: 25850333
The RNA shapes studio.
Janssen S, Giegerich R., Bioinformatics 31(3), 2015
PMID: 25273103
Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli.
Sharma V, Prere MF, Canal I, Firth AE, Atkins JF, Baranov PV, Fayet O., Nucleic Acids Res. 42(11), 2014
PMID: 24875478
A high-definition view of functional genetic variation from natural yeast genomes.
Bergstrom A, Simpson JT, Salinas F, Barre B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G., Mol. Biol. Evol. 31(4), 2014
PMID: 24425782
Molecular characterization and phylogenetic analysis of the genome of porcine torovirus.
Sun H, Lan D, Lu L, Chen M, Wang C, Hua X., Arch. Virol. 159(4), 2014
PMID: 24122107
Ligand-inducible formation of RNA pseudoknot.
Matsumoto S, Hong C, Otabe T, Murata A, Nakatani K., Bioorg. Med. Chem. Lett. 23(12), 2013
PMID: 23664873
Identification of the nature of reading frame transitions observed in prokaryotic genomes.
Antonov I, Coakley A, Atkins JF, Baranov PV, Borodovsky M., Nucleic Acids Res. 41(13), 2013
PMID: 23649834
Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication.
Nakano K, Ando T, Yamagishi M, Yokoyama K, Ishida T, Ohsugi T, Tanaka Y, Brighty DW, Watanabe T., Microbes Infect. 15(6-7), 2013
PMID: 23541980
Retrotransposon Ty1 RNA contains a 5'-terminal long-range pseudoknot required for efficient reverse transcription.
Huang Q, Purzycka KJ, Lusvarghi S, Li D, Legrice SF, Boeke JD., RNA 19(3), 2013
PMID: 23329695
HTLV-1 Rex: the courier of viral messages making use of the host vehicle.
Nakano K, Watanabe T., Front Microbiol 3(), 2012
PMID: 22973269
Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives.
Ahmed F, Benedito VA, Zhao PX., Front Plant Sci 2(), 2011
PMID: 22639614
Strain-specific copy number variation in the intelectin locus on the 129 mouse chromosome 1.
Lu ZH, di Domenico A, Wright SH, Knight PA, Whitelaw CB, Pemberton AD., BMC Genomics 12(), 2011
PMID: 21324158
DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model.
Sperschneider J, Datta A., Nucleic Acids Res. 38(7), 2010
PMID: 20123730
Recode-2: new design, new search tools, and many more genes.
Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV., Nucleic Acids Res. 38(Database issue), 2010
PMID: 19783826
Parallel germline infiltration of a lentivirus in two Malagasy lemurs.
Gilbert C, Maxfield DG, Goodman SM, Feschotte C., PLoS Genet. 5(3), 2009
PMID: 19300488

30 References

Data provided by Europe PubMed Central.

PseudoBase: structural information on RNA pseudoknots.
van Batenburg FH, Gultyaev AP, Pleij CW., Nucleic Acids Res. 29(1), 2001
PMID: 11125088
Thermodynamic matchers: strengthening the significance of RNA folding energies
Höchsmann T, Höchsmann M, Giegerich R., 2006
PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals.
Belew AT, Hepler NL, Jacobs JL, Dinman JD., BMC Genomics 9(), 2008
PMID: 18637175
Locomotif: from graphical motif description to RNA motif search.
Reeder J, Reeder J, Giegerich R., Bioinformatics 23(13), 2007
PMID: 17646322

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18820303
PubMed | Europe PMC

Search this title in

Google Scholar