Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix

Elsner L (1976)
Linear algebra and its applications 15(3): 235-242.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Noda established the superlinear convergence of an inverse iteration procedure for calculating the spectral radius and the associated positive eigenvector of a non-negative irreducible matrix. Here a new proof is given, based completely on the underlying order structure. The main tool is Hopf's inequality. It is shown that the convergence is quadratic.
Erscheinungsjahr
Zeitschriftentitel
Linear algebra and its applications
Band
15
Zeitschriftennummer
3
Seite
235-242
ISSN
PUB-ID

Zitieren

Elsner L. Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications. 1976;15(3):235-242.
Elsner, L. (1976). Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications, 15(3), 235-242. doi:10.1016/0024-3795(76)90029-X
Elsner, L. (1976). Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications 15, 235-242.
Elsner, L., 1976. Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications, 15(3), p 235-242.
L. Elsner, “Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix”, Linear algebra and its applications, vol. 15, 1976, pp. 235-242.
Elsner, L.: Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications. 15, 235-242 (1976).
Elsner, Ludwig. “Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix”. Linear algebra and its applications 15.3 (1976): 235-242.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z