Grain boundary resistance in polycrystalline metals

Reiss G, Vancea J, Hoffmann H (1986)
Physical review letters 56(19): 2100-2103.

Download
OA
Journal Article | Published | English
Author
; ;
Abstract
Grain boundaries are known to reduce significantly the electrical dc conductivity of polycrystalline metallic materials. In this paper, we give a quantum mechanical calculation of the grain-boundary resistance based on the transfer-matrix approach. The results show an exponential decrease of the conductivity with respect to the number of grain boundaries per mean free path in accord with an empirical model proposed recently.
Publishing Year
ISSN
PUB-ID

Cite this

Reiss G, Vancea J, Hoffmann H. Grain boundary resistance in polycrystalline metals. Physical review letters. 1986;56(19):2100-2103.
Reiss, G., Vancea, J., & Hoffmann, H. (1986). Grain boundary resistance in polycrystalline metals. Physical review letters, 56(19), 2100-2103.
Reiss, G., Vancea, J., and Hoffmann, H. (1986). Grain boundary resistance in polycrystalline metals. Physical review letters 56, 2100-2103.
Reiss, G., Vancea, J., & Hoffmann, H., 1986. Grain boundary resistance in polycrystalline metals. Physical review letters, 56(19), p 2100-2103.
G. Reiss, J. Vancea, and H. Hoffmann, “Grain boundary resistance in polycrystalline metals”, Physical review letters, vol. 56, 1986, pp. 2100-2103.
Reiss, G., Vancea, J., Hoffmann, H.: Grain boundary resistance in polycrystalline metals. Physical review letters. 56, 2100-2103 (1986).
Reiss, Günter, Vancea, Johann, and Hoffmann, Horst. “Grain boundary resistance in polycrystalline metals”. Physical review letters 56.19 (1986): 2100-2103.
Main File(s)
File Name
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

12 Citations in Europe PMC

Data provided by Europe PubMed Central.

Nanowire transformation and annealing by Joule heating.
Hummelgard M, Zhang R, Carlberg T, Vengust D, Dvorsek D, Mihailovic D, Olin H., Nanotechnology 21(16), 2010
PMID: 20351407
Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields.
Fujita T, Okada H, Koyama K, Watanabe K, Maekawa S, Chen MW., Phys. Rev. Lett. 101(16), 2008
PMID: 18999696
Spin-flip scattering for the electrical property of metallic-nanoparticle thin films.
Lue JT, Huang WC, Ma SK., Phys. Rev., B Condens. Matter 51(20), 1995
PMID: 9978390
Electronic transport in metallic iron disilicide.
Larsen KK, Van Hove M , Lauwers A, Donaton RA, Maex K, Van Rossum M ., Phys. Rev., B Condens. Matter 50(19), 1994
PMID: 9975641
Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures.
Juhasz T, Elsayed-Ali HE, Smith GO, Suarez C, Bron WE., Phys. Rev., B Condens. Matter 48(20), 1993
PMID: 10008098
Femtosecond time-resolved thermomodulation of thin gold films with different crystal structures.
Elsayed-Ali HE, Juhasz T., Phys. Rev., B Condens. Matter 47(20), 1993
PMID: 10005673
Electrical resistivity of polycrystalline niobium nitride films.
Nigro A, Nobile G, Rubino MG, Vaglio R., Phys. Rev., B Condens. Matter 37(8), 1988
PMID: 9945028
Time-resolved thermal transport in compositionally modulated metal films.
Clemens BM, Eesley GL, Paddock CA., Phys. Rev., B Condens. Matter 37(3), 1988
PMID: 9944614
Resistance oscillations and crossover in ultrathin gold films.
Jalochowski M, Bauer E., Phys. Rev., B Condens. Matter 37(15), 1988
PMID: 9944223
Electrical conduction in low-resistivity (quasiamorphous) Ag1-xCux alloys.
Vancea J, Pukowietz S, Reiss G, Hoffmann H., Phys. Rev., B Condens. Matter 35(17), 1987
PMID: 9941301
Mean-free-path concept in polycrystalline metals.
Vancea J, Reiss G, Hoffmann H., Phys. Rev., B Condens. Matter 35(12), 1987
PMID: 9940880

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10032857
PubMed | Europe PMC

Search this title in

Google Scholar