Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen

Poguntke D (1976)
Monatshefte für Mathematik 81(1): 15-40.

Download
OA
Journal Article | Published | German
Author
Abstract
In this paper we study the class [A] of all locally compact groups G with the property that for each closed subgroup H of G there exists a pair of homomorphisms into a compact group with H as coincidence set, and the class [D] of all locally compact group G with the property that finite dimensional unitary representations of subgroups of G can be extended to finite dimensional representations of G. It is shown that [MOORE]-groups (every irreducible unitary representation is finite dimensional) have these two properties. A solvable group in [D] is a [MOORE]-group. Moreover, we prove a structure theorem for Lie groups in the class [MOORE], and show that compactly generated Lie groups in [MOORE] have faithful finite dimensional unitary representations.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Poguntke D. Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen. Monatshefte für Mathematik. 1976;81(1):15-40.
Poguntke, D. (1976). Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen. Monatshefte für Mathematik, 81(1), 15-40.
Poguntke, D. (1976). Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen. Monatshefte für Mathematik 81, 15-40.
Poguntke, D., 1976. Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen. Monatshefte für Mathematik, 81(1), p 15-40.
D. Poguntke, “Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen”, Monatshefte für Mathematik, vol. 81, 1976, pp. 15-40.
Poguntke, D.: Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen. Monatshefte für Mathematik. 81, 15-40 (1976).
Poguntke, Detlev. “Zwei Klassen lokalkompakter maximal fastperiodischer Gruppen”. Monatshefte für Mathematik 81.1 (1976): 15-40.
Main File(s)
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar