Convergence properties of ART and SOR algorithms

Elsner L, Koltracht I, Lancaster P (1991)
Numerische Mathematik 59(1): 91-106.

Download
OA
Journal Article | Published | English
Author
; ;
Abstract
ART algorithms with relaxation parameters are studied for general (consistent or inconsistent) linear algebraic systems Rx = f, and a general convergence theorem is formulated. The advantage of severe underrelaxation is re-examined and clarified. The relationship to solutions obtained by applying SOR methods to the equation RR(T)y = f is investigated.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Elsner L, Koltracht I, Lancaster P. Convergence properties of ART and SOR algorithms. Numerische Mathematik. 1991;59(1):91-106.
Elsner, L., Koltracht, I., & Lancaster, P. (1991). Convergence properties of ART and SOR algorithms. Numerische Mathematik, 59(1), 91-106.
Elsner, L., Koltracht, I., and Lancaster, P. (1991). Convergence properties of ART and SOR algorithms. Numerische Mathematik 59, 91-106.
Elsner, L., Koltracht, I., & Lancaster, P., 1991. Convergence properties of ART and SOR algorithms. Numerische Mathematik, 59(1), p 91-106.
L. Elsner, I. Koltracht, and P. Lancaster, “Convergence properties of ART and SOR algorithms”, Numerische Mathematik, vol. 59, 1991, pp. 91-106.
Elsner, L., Koltracht, I., Lancaster, P.: Convergence properties of ART and SOR algorithms. Numerische Mathematik. 59, 91-106 (1991).
Elsner, Ludwig, Koltracht, Israel, and Lancaster, Peter. “Convergence properties of ART and SOR algorithms”. Numerische Mathematik 59.1 (1991): 91-106.
Main File(s)
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar