Convergence properties of ART and SOR algorithms

Elsner L, Koltracht I, Lancaster P (1991)
Numerische Mathematik 59(1): 91-106.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ;
Abstract / Bemerkung
ART algorithms with relaxation parameters are studied for general (consistent or inconsistent) linear algebraic systems Rx = f, and a general convergence theorem is formulated. The advantage of severe underrelaxation is re-examined and clarified. The relationship to solutions obtained by applying SOR methods to the equation RR(T)y = f is investigated.
Erscheinungsjahr
Zeitschriftentitel
Numerische Mathematik
Band
59
Zeitschriftennummer
1
Seite
91-106
ISSN
eISSN
PUB-ID

Zitieren

Elsner L, Koltracht I, Lancaster P. Convergence properties of ART and SOR algorithms. Numerische Mathematik. 1991;59(1):91-106.
Elsner, L., Koltracht, I., & Lancaster, P. (1991). Convergence properties of ART and SOR algorithms. Numerische Mathematik, 59(1), 91-106. doi:10.1007/BF01385772
Elsner, L., Koltracht, I., and Lancaster, P. (1991). Convergence properties of ART and SOR algorithms. Numerische Mathematik 59, 91-106.
Elsner, L., Koltracht, I., & Lancaster, P., 1991. Convergence properties of ART and SOR algorithms. Numerische Mathematik, 59(1), p 91-106.
L. Elsner, I. Koltracht, and P. Lancaster, “Convergence properties of ART and SOR algorithms”, Numerische Mathematik, vol. 59, 1991, pp. 91-106.
Elsner, L., Koltracht, I., Lancaster, P.: Convergence properties of ART and SOR algorithms. Numerische Mathematik. 59, 91-106 (1991).
Elsner, Ludwig, Koltracht, Israel, and Lancaster, Peter. “Convergence properties of ART and SOR algorithms”. Numerische Mathematik 59.1 (1991): 91-106.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z