Diametric theorems in sequence spaces

Ahlswede R, Cai N, Zhang Z (1992)
Combinatorica 12(1): 1-17.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
We determine in almost all Manhattan lattices configurations, which for specified diameter have maximal cardinality. Cases, in which those configurations are spheres, have been studied recently by Kleitman and Fellows. For Hamming spaces we present a partial result supplementing a result of Frankl and Füredi and we formulate a general conjecture.
Erscheinungsjahr
Zeitschriftentitel
Combinatorica
Band
12
Zeitschriftennummer
1
Seite
1-17
ISSN
eISSN
PUB-ID

Zitieren

Ahlswede R, Cai N, Zhang Z. Diametric theorems in sequence spaces. Combinatorica. 1992;12(1):1-17.
Ahlswede, R., Cai, N., & Zhang, Z. (1992). Diametric theorems in sequence spaces. Combinatorica, 12(1), 1-17. doi:10.1007/BF01191200
Ahlswede, R., Cai, N., and Zhang, Z. (1992). Diametric theorems in sequence spaces. Combinatorica 12, 1-17.
Ahlswede, R., Cai, N., & Zhang, Z., 1992. Diametric theorems in sequence spaces. Combinatorica, 12(1), p 1-17.
R. Ahlswede, N. Cai, and Z. Zhang, “Diametric theorems in sequence spaces”, Combinatorica, vol. 12, 1992, pp. 1-17.
Ahlswede, R., Cai, N., Zhang, Z.: Diametric theorems in sequence spaces. Combinatorica. 12, 1-17 (1992).
Ahlswede, Rudolf, Cai, Ning, and Zhang, Zhen. “Diametric theorems in sequence spaces”. Combinatorica 12.1 (1992): 1-17.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z