Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects

Warzecha A-K, Borst A, Egelhaaf M (1992)
Neuroscience Letters 141(1): 119-122.

Download
OA
Journal Article | Published | English
Author
; ;
Abstract
Many animals use relative motion to segregate objects from their background [21, 26, 28, 31, 33]. Nerve cells tuned to this visual cue have been found in various animal groups, such as insects [3, 4, 6, 24, 25], amphibians [32], birds [12, 13] and mammals [1, 14]. Well examined examples are the figure detection (FD) cells in the visual system of the blowfly [6, 11]. The mechanism that tunes a particular FD-cell, the FD1-cell, to small-field motion is analyzed by injecting individual visual interneurons with a fluorescent dye and ablating them by illumination with a laser beam. In this way, it is shown that the FD1-cell acquires its specific spatial tuning by inhibitory input from an identified GABAergic cell, the ventral centrifugal horizontal (VCH)-cell which is most sensitive to coherent large-field motion in front of both eyes. For the first time, the detection of small objects by evaluation of their motion parallax, thus, can be attributed to synaptic interactions between identified neurons.
Publishing Year
ISSN
PUB-ID

Cite this

Warzecha A-K, Borst A, Egelhaaf M. Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects. Neuroscience Letters. 1992;141(1):119-122.
Warzecha, A. - K., Borst, A., & Egelhaaf, M. (1992). Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects. Neuroscience Letters, 141(1), 119-122.
Warzecha, A. - K., Borst, A., and Egelhaaf, M. (1992). Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects. Neuroscience Letters 141, 119-122.
Warzecha, A.-K., Borst, A., & Egelhaaf, M., 1992. Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects. Neuroscience Letters, 141(1), p 119-122.
A.-K. Warzecha, A. Borst, and M. Egelhaaf, “Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects”, Neuroscience Letters, vol. 141, 1992, pp. 119-122.
Warzecha, A.-K., Borst, A., Egelhaaf, M.: Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects. Neuroscience Letters. 141, 119-122 (1992).
Warzecha, Anne-Kathrin, Borst, Alexander, and Egelhaaf, Martin. “Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects”. Neuroscience Letters 141.1 (1992): 119-122.
Main File(s)
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

4 Citations in Europe PMC

Data provided by Europe PubMed Central.

Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
Aptekar JW, Keles MF, Lu PM, Zolotova NM, Frye MA., J. Neurosci. 35(19), 2015
PMID: 25972183
Dendritic translocation establishes the winner in cerebellar climbing fiber synapse elimination.
Carrillo J, Nishiyama N, Nishiyama H., J. Neurosci. 33(18), 2013
PMID: 23637158
Object tracking in motion-blind flies.
Bahl A, Ammer G, Schilling T, Borst A., Nat. Neurosci. 16(6), 2013
PMID: 23624513
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 1508393
PubMed | Europe PMC

Search this title in

Google Scholar