Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy

Marme N, Friedrich A, Müller M, Nolte O, Wolfrum J, Hoheisel JD, Sauer M, Knemeyer J-P (2006)
Nucleic Acids Research 34(13): e90.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
We demonstrate the specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis applying fluorescently labeled DNA-hairpin structures (smart probes) in combination with single-molecule fluorescence spectroscopy. Smart probes are singly labeled hairpin-shaped oligonucleotides bearing a fluorescent dye at the 5' end that is quenched by guanosine residues in the complementary stem. Upon hybridization to target sequences, a conformational change occurs, reflected in a strong increase in fluorescence intensity. An excess of unlabeled (‘cold’) oligonucleotides was used to prevent the formation of secondary structures in the target sequence and thus facilitates hybridization of smart probes. Applying standard ensemble fluorescence spectroscopy we demonstrate the identification of SNPs in PCR amplicons of mycobacterial rpoB gene fragments with a detection sensitivity of 10^-8 M. To increase the detection sensitivity, confocal fluorescence microscopy was used to observe fluorescence bursts of individual smart probes freely diffusing through the detection volume. By measuring burst size, burst duration and fluorescence lifetime for each fluorescence burst the discrimination accuracy between closed and open (hybridized) smart probes could be substantially increased. The developed technique enables the identification of SNPs in 10^-11 M solutions of PCR amplicons from M.tuberculosis in only 100 s.
Erscheinungsjahr
Zeitschriftentitel
Nucleic Acids Research
Band
34
Zeitschriftennummer
13
Seite
e90
ISSN
eISSN
PUB-ID

Zitieren

Marme N, Friedrich A, Müller M, et al. Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Research. 2006;34(13):e90.
Marme, N., Friedrich, A., Müller, M., Nolte, O., Wolfrum, J., Hoheisel, J. D., Sauer, M., et al. (2006). Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Research, 34(13), e90. doi:10.1093/nar/gkl495
Marme, N., Friedrich, A., Müller, M., Nolte, O., Wolfrum, J., Hoheisel, J. D., Sauer, M., and Knemeyer, J. - P. (2006). Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Research 34, e90.
Marme, N., et al., 2006. Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Research, 34(13), p e90.
N. Marme, et al., “Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy”, Nucleic Acids Research, vol. 34, 2006, pp. e90.
Marme, N., Friedrich, A., Müller, M., Nolte, O., Wolfrum, J., Hoheisel, J.D., Sauer, M., Knemeyer, J.-P.: Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. Nucleic Acids Research. 34, e90 (2006).
Marme, Nicole, Friedrich, Achim, Müller, Matthias, Nolte, Oliver, Wolfrum, Jürgen, Hoheisel, Jörg D., Sauer, Markus, and Knemeyer, Jens-Peter. “Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy”. Nucleic Acids Research 34.13 (2006): e90.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-10-10T12:37:22Z

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes.
Mishra S, Lahiri H, Banerjee S, Mukhopadhyay R., Nucleic Acids Res 44(8), 2016
PMID: 27025649
Tunable blinking kinetics of cy5 for precise DNA quantification and single-nucleotide difference detection.
Yeh HC, Puleo CM, Ho YP, Bailey VJ, Lim TC, Liu K, Wang TH., Biophys J 95(2), 2008
PMID: 18424494

41 References

Daten bereitgestellt von Europe PubMed Central.

Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis.
Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T., Lancet 341(8846), 1993
PMID: 8095569
Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis.
Watterson SA, Wilson SM, Yates MD, Drobniewski FA., J. Clin. Microbiol. 36(7), 1998
PMID: 9650946
PCR-based methodology for detecting multidrug-resistant strains of Mycobacterium tuberculosis Beijing family circulating in Russia.
Mokrousov I, Otten T, Vyazovaya A, Limeschenko E, Filipenko ML, Sola C, Rastogi N, Steklova L, Vyshnevskiy B, Narvskaya O., Eur. J. Clin. Microbiol. Infect. Dis. 22(6), 2003
PMID: 12783278
Low-stringency single-specific-primer PCR as a tool for detection of mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis.
Carvalho WS, Spindola de Miranda S, Costa KM, Araujo JG, Augusto CJ, Pesquero JB, Pesquero JL, Gomes MA., J. Clin. Microbiol. 41(7), 2003
PMID: 12843099
A homogeneous method for genotyping with fluorescence polarization.
Gibson NJ, Gillard HL, Whitcombe D, Ferrie RM, Newton CR, Little S., Clin. Chem. 43(8 Pt 1), 1997
PMID: 9267310
Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy.
Kinjo M, Rigler R., Nucleic Acids Res. 23(10), 1995
PMID: 7784185
Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer
Chen X., Kwok P.Y.., 1997
Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase.
Holland PM, Abramson RD, Watson R, Gelfand DH., Proc. Natl. Acad. Sci. U.S.A. 88(16), 1991
PMID: 1871133
A homogeneous, ligase-mediated DNA diagnostic test.
Chen X, Livak KJ, Kwok PY., Genome Res. 8(5), 1998
PMID: 9582198
Molecular beacons: probes that fluoresce upon hybridization.
Tyagi S, Kramer FR., Nat. Biotechnol. 14(3), 1996
PMID: 9630890
Thermodynamic basis of the enhanced specificity of structured DNA probes.
Bonnet G, Tyagi S, Libchaber A, Kramer FR., Proc. Natl. Acad. Sci. U.S.A. 96(11), 1999
PMID: 10339560
Multicolor molecular beacons for allele discrimination
Tyagi S., Bratu D.P., Kramer F.R.., 1998
Molecular-beacon-based array for sensitive DNA analysis.
Yao G, Tan W., Anal. Biochem. 331(2), 2004
PMID: 15265725
Single-mismatch detection using gold-quenched fluorescent oligonucleotides.
Dubertret B, Calame M, Libchaber AJ., Nat. Biotechnol. 19(4), 2001
PMID: 11283596
Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.
Steemers FJ, Ferguson JA, Walt DR., Nat. Biotechnol. 18(1), 2000
PMID: 10625399
Application of a miniature biochip using the molecular beacon probe in breast cancer gene BRCA1 detection.
Culha M, Stokes DL, Griffin GD, Vo-Dinh T., Biosens Bioelectron 19(9), 2004
PMID: 15018955
New fluorescent dyes in the red region for biodiagnostics
Sauer M., Han K.-T., Müller R., Nord S., Schulz A., Seeger S., Wolfrum J., Arden-Jacob J., Deltau G., Marx N.J.., 1995
Dynamics of the electron transfer reaction between an oxazine dye and DNA oligonucleotides monitored on the single-molecule level
Sauer M., Drexhage K.H., Lieberwirth U., Müller R., Nord S., Zander C.., 1998
Probes for detection of specific DNA sequences at the single-molecule level.
Knemeyer JP, Marme N, Sauer M., Anal. Chem. 72(16), 2000
PMID: 10959954
Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins
Heinlein T., Knemeyer J.P., Piestert O., Sauer M.., 2003
A single-molecule sensitive DNA hairpin system based on intramolecular electron transfer
Piestert O., Barsch H., Buschmann V., Heinlein T., Knemeyer J.P., Weston K.D., Sauer M.., 2003
Species-specific identification of mycobacterial 16S rRNA PCR amplicons using smart probes.
Stohr K, Hafner B, Nolte O, Wolfrum J, Sauer M, Herten DP., Anal. Chem. 77(22), 2005
PMID: 16285666
The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy.
Kim J, Doose S, Neuweiler H, Sauer M., Nucleic Acids Res. 34(9), 2006
PMID: 16687657
Frequency of rpoB Mutations Inside and Outside the Clusters I Region in Rifampicin-Resistant Isolates
Heep M., Brandstatter B., Rieger U., Lehn N., Richter E., Rusch-Gerdes S., Niemann S.., 2000
Characterization of rifampicin-resistant Mycobacterium tuberculosis in Taiwan.
Hwang HY, Chang CY, Chang LL, Chang SF, Chang YH, Chen YJ., J. Med. Microbiol. 52(Pt 3), 2003
PMID: 12621089
Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis.
Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S., J. Antimicrob. Chemother. 42(5), 1998
PMID: 9848446

Zuker M., Mathews D.H., Turner D.H.., 1999
Photophysical dynamics of single dye molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM)
Tinnefeld P., Herten D.P., Sauer M.., 2001
Bias and precision in the estimation of exponential decay parameters from sparse data
Tellinghuisen J., Wilkerson C.W.., 1993
Error analysis of simple algorithms for determining fluorescence lifetimes in ultradilute dye solutions
Soper S.A., Legendre B.L.., 1994
Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy
Magde D., Elson E.L., Webb W.W.., 1972
Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy
Widengren J., Schwille P.., 2000
Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations
Widengren J., Schweinberger E., Berger S., Seidel C.A.M.., 2001
Autofluorescence of viable cultured mammalian cells
Aubin J.E.., 1979
Reduction of luminescent background in ultrasensitive fluorescence detection by photobleaching
Affleck R.L., Ambrose W.P., Demas J.N., Goodwin P.M., Schecker J.A., Wu M., Keller R.A.., 1996
Detection and identification of individual antigen molecules in human serum with pulsed semiconductor lasers
Sauer M., Zander C., Müller R., Ullrich B., Drexhage K.H., Kaul S., Wolfrum J.., 1997
Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology
Tinnefeld P., Sauer M.., 2005

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16870719
PubMed | Europe PMC

Suchen in

Google Scholar