Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life

Kurtz R, Egelhaaf M (2003)
Molecular neurobiology 27(1): 13-32.

Download
OA
Journal Article | Published | English
Abstract
Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.
Publishing Year
ISSN
PUB-ID

Cite this

Kurtz R, Egelhaaf M. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology. 2003;27(1):13-32.
Kurtz, R., & Egelhaaf, M. (2003). Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology, 27(1), 13-32.
Kurtz, R., and Egelhaaf, M. (2003). Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology 27, 13-32.
Kurtz, R., & Egelhaaf, M., 2003. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology, 27(1), p 13-32.
R. Kurtz and M. Egelhaaf, “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”, Molecular neurobiology, vol. 27, 2003, pp. 13-32.
Kurtz, R., Egelhaaf, M.: Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology. 27, 13-32 (2003).
Kurtz, Rafael, and Egelhaaf, Martin. “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”. Molecular neurobiology 27.1 (2003): 13-32.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-09-23T11:10:03Z

This data publication is cited in the following publications:
This publication cites the following data publications:

1 Citation in Europe PMC

Data provided by Europe PubMed Central.

Pedal neuron 3 serves a significant role in effecting turning during crawling by the marine slug Tritonia diomedea (Bergh).
Redondo RL, Murray JA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(5), 2005
PMID: 15778839

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 12668900
PubMed | Europe PMC

Search this title in

Google Scholar