Temporal precision of the encoding of motion information by visual interneurons

Warzecha A-K, Kretzberg J, Egelhaaf M (1998)
Current Biology 8(7): 359-368.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
BACKGROUND: There is much controversy about the timescale on which neurons process and transmit information. On the one hand, a vast amount of information can be processed by the nervous system if the precise timing of individual spikes on a millisecond timescale is important. On the other hand, neuronal responses to identical stimuli often vary considerably and stochastic response fluctuations can exceed the mean response amplitude. Here, we examined the timescale on which neural responses could be locked to visual motion stimuli. RESULTS: Spikes of motion-sensitive neurons in the visual system of the blowfly are time-locked to visual motion with a precision in the range of several tens of milliseconds. Nevertheless, different motion-sensitive neurons with largely overlapping receptive fields generate a large proportion of spikes almost synchronously. This precision is brought about by stochastic rather than by motion-induced membrane-potential fluctuations elicited by the common peripheral input. The stochastic membrane-potential fluctuations contain more power at frequencies above 30-40 Hz than the motion-induced potential changes. A model of spike generation indicates that such fast membrane-potential changes are a major determinant of the precise timing of spikes. CONCLUSIONS: The timing of spikes in neurons of the motion pathway of the blowfly is controlled on a millisecond timescale by fast membrane-potential fluctuations. Despite this precision, spikes do not lock to motion stimuli on this timescale because visual motion does not induce sufficiently rapid changes in the membrane potential.
Erscheinungsjahr
Zeitschriftentitel
Current Biology
Band
8
Zeitschriftennummer
7
Seite
359-368
ISSN
PUB-ID

Zitieren

Warzecha A-K, Kretzberg J, Egelhaaf M. Temporal precision of the encoding of motion information by visual interneurons. Current Biology. 1998;8(7):359-368.
Warzecha, A. - K., Kretzberg, J., & Egelhaaf, M. (1998). Temporal precision of the encoding of motion information by visual interneurons. Current Biology, 8(7), 359-368. doi:10.1016/S0960-9822(98)70154-X
Warzecha, A. - K., Kretzberg, J., and Egelhaaf, M. (1998). Temporal precision of the encoding of motion information by visual interneurons. Current Biology 8, 359-368.
Warzecha, A.-K., Kretzberg, J., & Egelhaaf, M., 1998. Temporal precision of the encoding of motion information by visual interneurons. Current Biology, 8(7), p 359-368.
A.-K. Warzecha, J. Kretzberg, and M. Egelhaaf, “Temporal precision of the encoding of motion information by visual interneurons”, Current Biology, vol. 8, 1998, pp. 359-368.
Warzecha, A.-K., Kretzberg, J., Egelhaaf, M.: Temporal precision of the encoding of motion information by visual interneurons. Current Biology. 8, 359-368 (1998).
Warzecha, Anne-Kathrin, Kretzberg, Jutta, and Egelhaaf, Martin. “Temporal precision of the encoding of motion information by visual interneurons”. Current Biology 8.7 (1998): 359-368.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-09-15T06:47:19Z

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Möller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res 43(7), 2003
PMID: 12639604
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938
Information transfer in entrained cortical neurons.
Tiesinga PH, Fellous JM, José JV, Sejnowski TJ., Network 13(1), 2002
PMID: 11878284
Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons.
Tiesinga PH., Phys Rev E Stat Nonlin Soft Matter Phys 65(4 pt 1), 2002
PMID: 12005879
Attractor reliability reveals deterministic structure in neuronal spike trains.
Tiesinga PH, Fellous JM, Sejnowski TJ., Neural Comput 14(7), 2002
PMID: 12079549
Neural coding with graded membrane potential changes and spikes.
Kretzberg J, Warzecha AK, Egelhaaf M., J Comput Neurosci 11(2), 2001
PMID: 11717531
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur J Neurosci 12(6), 2000
PMID: 10886355
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res 39(16), 1999
PMID: 10492824

51 References

Daten bereitgestellt von Europe PubMed Central.

Neural coding
Perkel, Neurosci Res Progr Bulletin 3(), 1968
Noise, neural codes and cortical organization.
Shadlen MN, Newsome WT., Curr. Opin. Neurobiol. 4(4), 1994
PMID: 7812147
Simple codes versus efficient codes.
Softky WR., Curr. Opin. Neurobiol. 5(2), 1995
PMID: 7620313
Is there a signal in the noise?
Shadlen MN, Newsome WT., Curr. Opin. Neurobiol. 5(2), 1995
PMID: 7620314

Rieke, 1997
The structure and precision of retinal spike trains.
Berry MJ, Warland DK, Meister M., Proc. Natl. Acad. Sci. U.S.A. 94(10), 1997
PMID: 9144251
Reproducibility and variability in neural spike trains.
de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W., Science 275(5307), 1997
PMID: 9065407
Variability of responses of cat retinal ganglion cells.
Levine MW, Cleland BG, Zimmerman RP., Vis. Neurosci. 8(3), 1992
PMID: 1547162
The statistical reliability of signals in single neurons in cat and monkey visual cortex.
Tolhurst DJ, Movshon JA, Dean AF., Vision Res. 23(8), 1983
PMID: 6623937
Responses of neurons in macaque MT to stochastic motion signals.
Britten KH, Shadlen MN, Newsome WT, Movshon JA., Vis. Neurosci. 10(6), 1993
PMID: 8257671

Warzecha, 1994

Johnston, 1995
Neural mechanisms of visual course control in insects
Hausen, 1989
Synaptic limitations to contrast coding in the retina of the blowfly Calliphora
Laughlin, Proc R Soc Lond Biol 231(), 1987
The rate of information transfer at graded-potential synapses
Laughlin, Nature 379(), 1996
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199
Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences
Ruyter, Proc R Soc Lond Biol 234(), 1988
Reliability and statistical efficiency of a blowfly movement-sensitive neuron
Ruyter, Phil Trans R Soc Lond Biol 348(), 1995
Movement detection in arthropods
Egelhaaf, 1993
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: structure and signals
Hausen, Biol Cybern 45(), 1982
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen, Verh Dtsch Zool Ges 74(), 1981
Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: receptive field organization and response characteristics
Hausen, Biol Cybern 46(), 1982
Associative memory in a network of ‘spiking’ neurons
Gerstner, Network 3(), 1992

Gerstner, 1993
Reliability of spike timing in neocortical neurons.
Mainen ZF, Sejnowski TJ., Science 268(5216), 1995
PMID: 7770778
Influence of low and high frequency inputs on spike timing in visual cortical neurons.
Nowak LG, Sanchez-Vives MV, McCormick DA., Cereb. Cortex 7(6), 1997
PMID: 9276174
Amplification of high frequency synaptic inputs by active dendritic membrane processes
Haag, Nature 379(), 1996
Neural principles in the peripheral visual systems of invertebrates
Laughlin, 1981
Functional organization of the fly retina
Hardie, 1985
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc R Soc Lond Biol 225(), 1985
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly, Calliphora erythrocephala
Ruyter, Biol Cybern 54(), 1986
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst, Biol Cybern 56(), 1987
Neuronal signal fluctuations limit the coding of motion information in the blowfly Calliphora
Warzecha, 1994
Correlated firing of retinal ganglion cells.
Mastronarde DN., Trends Neurosci. 12(2), 1989
PMID: 2469215
Multineuronal codes in retinal signaling.
Meister M., Proc. Natl. Acad. Sci. U.S.A. 93(2), 1996
PMID: 8570603
Precisely correlated firing in cells of the lateral geniculate nucleus.
Alonso JM, Usrey WM, Reid RC., Nature 383(6603), 1996
PMID: 8893005
Temporal hyperacuity in the gymnotiform electric fish, Eigenmannia
Kawasaki, Amer Zool 33(), 1993
Processing of temporal information in the brain.
Carr CE., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460892
Intrinsic properties of biological movement detectors prevent the optomotor control system from getting unstable
Warzecha, Phil Trans R Soc Lond Biol 351(), 1996
Flight performance and visual control of flight of the freely-flying housefly (Musca domestica L.) II. Pursuit of targets
Wagner, Phil Trans R Soc Lond Biol 312(), 1986
Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus
Land, J Comp Physiol [A] 173(), 1993

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9545194
PubMed | Europe PMC

Suchen in

Google Scholar