Vision in flying insects

Egelhaaf M, Kern R (2002)
Current opinion in neurobiology 12(6): 699-706.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.
Current opinion in neurobiology


Egelhaaf M, Kern R. Vision in flying insects. Current opinion in neurobiology. 2002;12(6):699-706.
Egelhaaf, M., & Kern, R. (2002). Vision in flying insects. Current opinion in neurobiology, 12(6), 699-706. doi:10.1016/S0959-4388(02)00390-2
Egelhaaf, M., and Kern, R. (2002). Vision in flying insects. Current opinion in neurobiology 12, 699-706.
Egelhaaf, M., & Kern, R., 2002. Vision in flying insects. Current opinion in neurobiology, 12(6), p 699-706.
M. Egelhaaf and R. Kern, “Vision in flying insects”, Current opinion in neurobiology, vol. 12, 2002, pp. 699-706.
Egelhaaf, M., Kern, R.: Vision in flying insects. Current opinion in neurobiology. 12, 699-706 (2002).
Egelhaaf, Martin, and Kern, Roland. “Vision in flying insects”. Current opinion in neurobiology 12.6 (2002): 699-706.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Associative visual learning by tethered bees in a controlled visual environment.
Buatois A, Pichot C, Schultheiss P, Sandoz JC, Lazzari CR, Chittka L, Avarguès-Weber A, Giurfa M., Sci Rep 7(1), 2017
PMID: 29018218
Evidence for Visually Mediated Copulation Frequency in the Scarab Beetle Anomala corpulenta
Miao J, Wu YQ, Li KB, Jiang YL, Gong Zj, Duan Y, Li T., Journal of insect behavior. 28(2), 2015
PMID: IND601237755
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Visual stabilization dynamics are enhanced by standing flight velocity.
Theobald JC, Ringach DL, Frye MA., Biol Lett 6(3), 2010
PMID: 19955168
Dynamics of optomotor responses in Drosophila to perturbations in optic flow.
Theobald JC, Ringach DL, Frye MA., J Exp Biol 213(pt 8), 2010
PMID: 20348349
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol 8(), 2010
PMID: 20384983
Frequency response of lift control in Drosophila.
Graetzel CF, Nelson BJ, Fry SN., J R Soc Interface 7(52), 2010
PMID: 20462877
Fidelity of adaptive phototaxis.
Drescher K, Goldstein RE, Tuval I., Proc Natl Acad Sci U S A 107(25), 2010
PMID: 20534560
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
The motion after-effect: local and global contributions to contrast sensitivity.
Nordström K, O'Carroll DC., Proc Biol Sci 276(1662), 2009
PMID: 19324825
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput Biol 5(11), 2009
PMID: 19893631
Red specks on honey bees (Apis mellifera).
Mayer J., Lab Anim (NY) 34(7), 2005
PMID: 15995692
Are Drosophila a useful model for understanding the toxicity of inhaled oxidative pollutants: a review.
Wilson M, Widdicombe JH, Gohil K, Burtis KC, Reznick AZ, Cross CE, Eiserich JP., Inhal Toxicol 17(13), 2005
PMID: 16195212
A signature of salience in the Drosophila brain.
Frye MA, Dickinson MH., Nat Neurosci 6(6), 2003
PMID: 12771957

71 References

Daten bereitgestellt von Europe PubMed Central.

Outdoor performance of a motion-sensitive neuron in the blowfly.
Egelhaaf M, Grewe J, Kern R, Warzecha AK., Vision Res. 41(27), 2001
PMID: 11712978
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable
Warzecha, Phil Trans R Soc Lond B 351(), 1996
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534

Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc R Soc Lond Ser B 225(), 1985
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly, Calliphora erythrocephala
de, Biol Cybern 54(), 1986
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst, Biol Cybern 56(), 1987
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Afterimages in fly motion vision.
Harris RA, O'Carroll DC., Vision Res. 42(14), 2002
PMID: 12127104
Embodying natural vision into machines
Srinivasan, 1997
On robots and flies: modeling the visual orientation behavior of flies
Huber, Robotics and Autonomous Systems 29(), 1999
Biomimetic robot navigation
Franz, Robots and Autonomous Systems 30(), 2000
A silicon implementation of the fly's optomotor control system.
Harrison RR, Koch C., Neural Comput 12(10), 2000
PMID: 11032035
Landing strategies in honeybees, and possible applications to autonomous airborne vehicles.
Srinivasan MV, Zhang S, Chahl JS., Biol. Bull. 200(2), 2001
PMID: 11341587


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 12490262
PubMed | Europe PMC

Suchen in

Google Scholar