Steering a virtual blowfly: simulation of visual pursuit

Böddeker N, Egelhaaf M (2003)
Proceedings of the Royal Society B, Biological sciences 270(1527): 1971-1978.

Download
OA
Journal Article | Published | English
Abstract
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Böddeker N, Egelhaaf M. Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences. 2003;270(1527):1971-1978.
Böddeker, N., & Egelhaaf, M. (2003). Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences, 270(1527), 1971-1978.
Böddeker, N., and Egelhaaf, M. (2003). Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences 270, 1971-1978.
Böddeker, N., & Egelhaaf, M., 2003. Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences, 270(1527), p 1971-1978.
N. Böddeker and M. Egelhaaf, “Steering a virtual blowfly: simulation of visual pursuit”, Proceedings of the Royal Society B, Biological sciences, vol. 270, 2003, pp. 1971-1978.
Böddeker, N., Egelhaaf, M.: Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences. 270, 1971-1978 (2003).
Böddeker, Norbert, and Egelhaaf, Martin. “Steering a virtual blowfly: simulation of visual pursuit”. Proceedings of the Royal Society B, Biological sciences 270.1527 (2003): 1971-1978.
Main File(s)
Access Level
OA Open Access

This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

The Role of Motion Extrapolation in Amphibian Prey Capture.
Borghuis BG, Leonardo A., J. Neurosci. 35(46), 2015
PMID: 26586829
Visual motor computations in insects.
Srinivasan MV, Zhang S., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217347

20 References

Data provided by Europe PubMed Central.

Model of a predatory stealth behaviour camouflaging motion.
Anderson AJ, McOwan PW., Proc. Biol. Sci. 270(1514), 2003
PMID: 12641903
Chasing a dummy target: smooth pursuit and velocity control in male blowflies.
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
Variations in photoreceptor response dynamics across the fly retina.
Burton BG, Tatler BW, Laughlin SB., J. Neurophysiol. 86(2), 2001
PMID: 11495963
Wing rotation and the aerodynamic basis of insect flight.
Dickinson MH, Lehmann FO, Sane SP., Science 284(5422), 1999
PMID: 10373107
Computation of object approach by a wide-field, motion-sensitive neuron.
Gabbiani F, Krapp HG, Laurent G., J. Neurosci. 19(3), 1999
PMID: 9920674
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Descending pathways connecting the male-specific visual system of flies to the neck and flight motor.
Gronenberg W, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723432
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Two methods for calculating the responses of photoreceptors to moving objects.
Korenberg MJ, Juusola M, French AS., Ann Biomed Eng 26(2), 1998
PMID: 9525770
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Visual motion processing and sensory-motor integration for smooth pursuit eye movements.
Lisberger SG, Morris EJ, Tychsen L., Annu. Rev. Neurosci. 10(), 1987
PMID: 3551767
Visual control of orientation behaviour in the fly. Part I. A quantitative analysis.
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441
Seeing what is coming: building collision-sensitive neurones.
Rind FC, Simmons PJ., Trends Neurosci. 22(5), 1999
PMID: 10322494
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
The fly can discriminate movement at signal/noise ratios as low as one-eighth.
Srinivasan MV, Bernard GD., Vision Res. 17(5), 1977
PMID: 878343

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 14561312
PubMed | Europe PMC

Search this title in

Google Scholar