Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions

Warzecha A-K, Egelhaaf M (2000)
Vision research 40(21): 2973-2983.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Erscheinungsjahr
Zeitschriftentitel
Vision research
Band
40
Ausgabe
21
Seite(n)
2973-2983
ISSN
PUB-ID

Zitieren

Warzecha A-K, Egelhaaf M. Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. Vision research. 2000;40(21):2973-2983.
Warzecha, A. - K., & Egelhaaf, M. (2000). Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. Vision research, 40(21), 2973-2983. doi:10.1016/S0042-6989(00)00147-4
Warzecha, A. - K., and Egelhaaf, M. (2000). Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. Vision research 40, 2973-2983.
Warzecha, A.-K., & Egelhaaf, M., 2000. Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. Vision research, 40(21), p 2973-2983.
A.-K. Warzecha and M. Egelhaaf, “Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions”, Vision research, vol. 40, 2000, pp. 2973-2983.
Warzecha, A.-K., Egelhaaf, M.: Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. Vision research. 40, 2973-2983 (2000).
Warzecha, Anne-Kathrin, and Egelhaaf, Martin. “Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions”. Vision research 40.21 (2000): 2973-2983.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-09-16T13:17:25Z

26 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The roles of vision and antennal mechanoreception in hawkmoth flight control.
Dahake A, Stöckl AL, Foster JJ, Sane SP, Kelber A., Elife 7(), 2018
PMID: 30526849
Signal, Noise, and Variation in Neural and Sensory-Motor Latency.
Lee J, Joshua M, Medina JF, Lisberger SG., Neuron 90(1), 2016
PMID: 26971946
Single and Multiple Change Point Detection in Spike Trains: Comparison of Different CUSUM Methods.
Koepcke L, Ashida G, Kretzberg J., Front Syst Neurosci 10(), 2016
PMID: 27445714
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.
Lee YJ, Jönsson HO, Nordström K., PLoS One 10(5), 2015
PMID: 25955416
Bumblebee Homing: The Fine Structure of Head Turning Movements.
Boeddeker N, Mertes M, Dittmar L, Egelhaaf M., PLoS One 10(9), 2015
PMID: 26352836
Wide-field feedback neurons dynamically tune early visual processing.
Tuthill JC, Nern A, Rubin GM, Reiser MB., Neuron 82(4), 2014
PMID: 24853944
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
The natural variation of a neural code.
Kfir Y, Renan I, Schneidman E, Segev R., PLoS One 7(3), 2012
PMID: 22427973
Higher-order motion sensitivity in fly visual circuits.
Lee YJ, Nordström K., Proc Natl Acad Sci U S A 109(22), 2012
PMID: 22586123
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
The effects of temperature on signalling in ocellar neurons of the desert locust, Schistocerca gregaria.
Simmons PJ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(11), 2011
PMID: 21830121
Visual gaze control during peering flight manoeuvres in honeybees.
Boeddeker N, Hemmi JM., Proc Biol Sci 277(1685), 2010
PMID: 20007175
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Stürzl W, Egelhaaf M., Proc Biol Sci 277(1689), 2010
PMID: 20147329
Sensor fusion in identified visual interneurons.
Parsons MM, Krapp HG, Laughlin SB., Curr Biol 20(7), 2010
PMID: 20303270
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordström K, O'Carroll DC., Curr Biol 20(11), 2010
PMID: 20537540
Ocular following response to sampled motion.
Boström KJ, Warzecha AK., Vision Res 49(13), 2009
PMID: 19366624
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Neurobiology: fly gyro-vision.
Frye MA., Curr Biol 19(24), 2009
PMID: 20064422
Afterimages in fly motion vision.
Harris RA, O'Carroll DC., Vision Res 42(14), 2002
PMID: 12127104
Outdoor performance of a motion-sensitive neuron in the blowfly.
Egelhaaf M, Grewe J, Kern R, Warzecha AK., Vision Res 41(27), 2001
PMID: 11712978

51 References

Daten bereitgestellt von Europe PubMed Central.

Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell response and prey-catching accuracy
Aho, Journal of Comparative Physiology, A 172(), 1993

Astheimer, 1989
The electrical response of turtle cones to flashes and steps of light.
Baylor DA, Hodgkin AL, Lamb TD., J. Physiol. (Lond.) 242(3), 1974
PMID: 4449052
Synaptic background activity influences spatiotemporal integration in single pyramidal cells
Bernander, Proceedings of the National Academy of Sciences of the USA 88(), 1991

Blackman, 1958
Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina.
Bolz J, Rosner G, Wassle H., J. Physiol. (Lond.) 328(), 1982
PMID: 7131312
Linearity and normalization in simple cells of the macaque primary visual cortex.
Carandini M, Heeger DJ, Movshon JA., J. Neurosci. 17(21), 1997
PMID: 9334433
The contrast frequency-dependence: a criterion for judging the non-participation of neurones in the control of behavioural responses
Eckert, Journal of Comparative Physiology, A 145(), 1981
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system
Egelhaaf, Biological Cybernetics 52(), 1985
Transient and steady-state response properties of movement detectors
Egelhaaf, Journal of the Optical Society of America, A 6(), 1989
Encoding of motion in real time by the fly visual system
Egelhaaf, Current Opinions in Neurobiology 9(), 1999
Estimating stimulus response latency
Friedman, Journal of Neuroscience Methods 83(), 1999
Smoothing bandwidth selection for response latency estimation.
Friedman HS, Priebe CE., J. Neurosci. Methods 87(1), 1999
PMID: 10065989
Latency: another potential code for feature binding in striate cortex.
Gawne TJ, Kjaer TW, Richmond BJ., J. Neurophysiol. 76(2), 1996
PMID: 8871243
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen, Verhandlungen der Deutschen Zoologischen Gesellschaft 74(), 1981
The lobula-complex of the fly: structure, function and significance in visual behaviour
Hausen, 1984

AUTHOR UNKNOWN, 0
Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina
Järvilehto, Zeitschrift für vergleichende Physiologie 75(), 1971
Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses.
Kawano K, Shidara M, Yamane S., J. Neurophysiol. 67(3), 1992
PMID: 1578251
Neural activity in cortical area MST of alert monkey during ocular following responses.
Kawano K, Shidara M, Watanabe Y, Yamane S., J. Neurophysiol. 71(6), 1994
PMID: 7931519
Ocular tracking: behavior and neurophysiology
Kawano, Current Opinions in Neurobiology 9(), 1999

Koch, 1999
Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST.
Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA., J. Neurophysiol. 71(5), 1994
PMID: 8064337
Neural principles in the peripheral visual systems of invertebrates
Laughlin, 1981
The physiological basis of variations in visual latency.
Lennie P., Vision Res. 21(6), 1981
PMID: 7314459
Saturation in a wide-field, directionally selective movement detection system in fly vision.
Lenting BP, Mastebroek HA, Zaagman WH., Vision Res. 24(10), 1984
PMID: 6523754
Visual motion analysis for pursuit eye movements in area MT of macaque monkeys
Lisberger, Journal of Neurophysiology 19(), 1999
Afterimage-like effects in the motion-sensitive neuron H1
Maddess, Proceedings of the Royal Society London, B 228(), 1986
Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys.
Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD., Vis. Neurosci. 16(1), 1999
PMID: 10022474
Visual response latencies in striate cortex of the macaque monkey.
Maunsell JH, Gibson JR., J. Neurophysiol. 68(4), 1992
PMID: 1432087
Response latencies of visual cells in macaque areas V1, V2 and V5.
Raiguel SE, Lagae L, Gulyas B, Orban GA., Brain Res. 493(1), 1989
PMID: 2776003
Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters.
Raiguel SE, Xiao DK, Marcar VL, Orban GA., J. Neurophysiol. 82(4), 1999
PMID: 10515984
Temperature dependence of receptor potential and noise in fly (Calliphora erythrocephala) photoreceptor cells
Roebroek, Journal of Insect Physiology 36(), 1990
Signal timing across the macaque visual system.
Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG., J. Neurophysiol. 79(6), 1998
PMID: 9636126
Übertragungeigenschaften der Sehzelle der Schmeißfliege Calliphora erythrocephala. 2. Die Abhängigkeit vom Ableitort: Retina — Lamina ganglionaris
Smola, Journal of Comparative Physiology 79(), 1972
Temperature, transduction and the temporal resolving power of fly photoreceptors
Tatler, Journal of Comparative Physiology, A 186(), 2000
Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala
Warzecha A, Horstmann W, Egelhaaf M., J. Exp. Biol. 202 Pt 22(), 1999
PMID: 10539965
Intrinsic properties of biological movement detectors prevent the optomotor control system from getting unstable
Warzecha, Philosophical Transactions of the Royal Society London, B 351(), 1996
Fly photoreceptors and temperature: relative UV-sensitivity is increased by cooling
Weckström, European Biophysical Journal 12(), 1985

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11000395
PubMed | Europe PMC

Suchen in

Google Scholar