Two-state migration of DNA in a structured microchannel

Streek M, Schmid F, Duong TT, Anselmetti D, Ros A (2005)
Physical review, E 71(1): 011905-1-011905-10.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ;
Abstract / Bemerkung
DNA migration in topologically structured microchannels with periodic cavities is investigated experimentally and with Brownian dynamics simulations of a simple bead-spring model. The results are in very good agreement with one another. In particular, the experimentally observed migration order of [lambda]- and T2-DNA molecules is reproduced by the simulations. The simulation data indicate that the mobility may depend on the chain length in a nonmonotonic way at high electric fields. This is found to be the signature of a nonequilibrium bistability between two different migration states, a slow one and a fast one. The latter can also be observed experimentally under appropriate conditions.
Erscheinungsjahr
Zeitschriftentitel
Physical review, E
Band
71
Zeitschriftennummer
1
Seite
011905-1-011905-10
ISSN
eISSN
PUB-ID

Zitieren

Streek M, Schmid F, Duong TT, Anselmetti D, Ros A. Two-state migration of DNA in a structured microchannel. Physical review, E. 2005;71(1):011905-1-011905-10.
Streek, M., Schmid, F., Duong, T. T., Anselmetti, D., & Ros, A. (2005). Two-state migration of DNA in a structured microchannel. Physical review, E, 71(1), 011905-1-011905-10. doi:10.1103/PhysRevE.71.011905
Streek, M., Schmid, F., Duong, T. T., Anselmetti, D., and Ros, A. (2005). Two-state migration of DNA in a structured microchannel. Physical review, E 71, 011905-1-011905-10.
Streek, M., et al., 2005. Two-state migration of DNA in a structured microchannel. Physical review, E, 71(1), p 011905-1-011905-10.
M. Streek, et al., “Two-state migration of DNA in a structured microchannel”, Physical review, E, vol. 71, 2005, pp. 011905-1-011905-10.
Streek, M., Schmid, F., Duong, T.T., Anselmetti, D., Ros, A.: Two-state migration of DNA in a structured microchannel. Physical review, E. 71, 011905-1-011905-10 (2005).
Streek, Martin, Schmid, Friederike, Duong, Thanh Tu, Anselmetti, Dario, and Ros, Alexandra. “Two-state migration of DNA in a structured microchannel”. Physical review, E 71.1 (2005): 011905-1-011905-10.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-11-03T15:31:59Z

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The stretching force on a tethered polymer in pressure-driven flow.
Szuttor K, Roy T, Hardt S, Holm C, Smiatek J., J Chem Phys 147(3), 2017
PMID: 28734293
Modeling the separation of macromolecules: a review of current computer simulation methods.
Slater GW, Holm C, Chubynsky MV, de Haan HW, Dubé A, Grass K, Hickey OA, Kingsburry C, Sean D, Shendruk TN, Zhan L., Electrophoresis 30(5), 2009
PMID: 19260004
Single-molecule DNA dynamics in tapered contraction-expansion microchannels under electrophoresis.
Hu X, Wang S, Lee LJ., Phys Rev E Stat Nonlin Soft Matter Phys 79(4 pt 1), 2009
PMID: 19518260
Hydrodynamic effects on the translocation rate of a polymer through a pore.
Hernández-Ortiz JP, Chopra M, Geier S, de Pablo JJ., J Chem Phys 131(4), 2009
PMID: 19655916
Scaling theory of polymer translocation into confined regions.
Wong CT, Muthukumar M., Biophys J 95(8), 2008
PMID: 18621833
Separation of long DNA chains using a nonuniform electric field: a numerical study.
Nagahiro S, Kawano S, Kotera H., Phys Rev E Stat Nonlin Soft Matter Phys 75(1 pt 1), 2007
PMID: 17358179
Simulation of DNA electrophoresis through microstructures.
Maleki-Jirsaraei N, Sarbolouki MN, Rouhani S., Electrophoresis 28(3), 2007
PMID: 17191278
Directing Brownian motion by oscillating barriers.
Bleil S, Reimann P, Bechinger C., Phys Rev E Stat Nonlin Soft Matter Phys 75(3 pt 1), 2007
PMID: 17500678
DNA electrophoresis in designed channels.
Sakaue T., Eur Phys J E Soft Matter 19(4), 2006
PMID: 16586014
A Nanofilter Array Chip for Fast Gel-Free Biomolecule Separation.
Fu J, Mao P, Han J., Appl Phys Lett 87(26), 2005
PMID: 18846250
Activated barrier crossing of macromolecules at a submicron-size entropic trap.
Paul AK., Phys Rev E Stat Nonlin Soft Matter Phys 72(6 pt 1), 2005
PMID: 16485965
Compression and free expansion of single DNA molecules in nanochannels.
Reccius CH, Mannion JT, Cross JD, Craighead HG., Phys Rev Lett 95(26), 2005
PMID: 16486410

31 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, proc natl acad sci u s a 94(), 1997

AUTHOR UNKNOWN, microelectron eng 67?68(), 2003

AUTHOR UNKNOWN, 1986

AUTHOR UNKNOWN, biochemistry 42(), 2003

AUTHOR UNKNOWN, 1992

AUTHOR UNKNOWN, 2002
Brownian motors: noisy transport far from equilibrium
Reimann, Physics Reports 361(2-4), 2002
Separation of 100-kilobase DNA molecules in 10 seconds.
Bakajin O, Duke TA, Tegenfeldt J, Chou CF, Chan SS, Austin RH, Cox EC., Anal. Chem. 73(24), 2001
PMID: 11791579
Characterization and optimization of an entropic trap for DNA separation.
Han J, Craighead HG., Anal. Chem. 74(2), 2002
PMID: 11811414
Conditions for similitude between the fluid velocity and electric field in electroosmotic flow
Cummings EB, Griffiths SK, Nilson RH, Paul PH., Anal. Chem. 72(11), 2000
PMID: 10857630
Electrophoretic Separation of Long Polyelectrolytes in Submolecular-Size Constrictions:  A Monte Carlo Study
Tessier, Macromolecules 35(12), 2002
Dynamics of DNA in entangled polymer solutions: An anisotropic friction model
Noguchi, The Journal of Chemical Physics 114(16), 2001
A microfabricated device for sizing and sorting DNA molecules.
Chou HP, Spence C, Scherer A, Quake S., Proc. Natl. Acad. Sci. U.S.A. 96(1), 1999
PMID: 9874762
Dynamics of pulsed-field electrophoresis.
Deutsch JM., Phys. Rev. Lett. 59(11), 1987
PMID: 10035183
Self-diffusion of an entangled DNA molecule by reptation.
Smith DE, Perkins TT, Chu S., Phys. Rev. Lett. 75(22), 1995
PMID: 10059826
Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms
Viovy, Reviews of Modern Physics 72(3), 2000
Entropic Trapping and Escape of Long DNA Molecules at Submicron Size Constriction
Han, Physical Review Letters 83(8), 1999
Erratum: Entropic Trapping and Escape of Long DNA Molecules at Submicron Size Constriction [Phys. Rev. Lett. 83, 1688 (1999)]
Han, Physical Review Letters 86(7), 2001
Monolithic nanofluid sieving structures for DNA manipulation
Turner, Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures 16(6), 1998
Separation of long DNA molecules in a microfabricated entropic trap array.
Han J, Craighead HG., Science 288(5468), 2000
PMID: 10807568
A DNA prism for high-speed continuous fractionation of large DNA molecules.
Huang LR, Tegenfeldt JO, Kraeft JJ, Sturm JC, Austin RH, Cox EC., Nat. Biotechnol. 20(10), 2002
PMID: 12219075
Simulation of Chain-length Partitioning in a Microfabricated Channel via Entropic Trapping
Chen, Molecular Simulation 29(6-7), 2003
Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation.
Streek M, Schmid F, Duong TT, Ros A., J. Biotechnol. 112(1-2), 2004
PMID: 15288943

DÜNWEG, International Journal of Modern Physics C 2(3), 1991
Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis
Huang, Analytical Chemistry 60(17), 1988
Integrated chip-based capillary electrophoresis.
Effenhauser CS, Bruin GJ, Paulus A., Electrophoresis 18(12-13), 1997
PMID: 9456035
Theoretical studies of DNA during gel electrophoresis.
Deutsch JM., Science 240(4854), 1988
PMID: 3363374
Brownian Dynamics Simulation of DNA Gel Electrophoresis
Matsumoto, Molecular Simulation 12(3), 1994

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15697628
PubMed | Europe PMC

Suchen in

Google Scholar