Behaviour-based modelling of hexapod locomotion: Linking biology and technical application

Dürr V, Schmitz J, Cruse H (2004)
Arthropod.Struct.Dev. 33(3): 237-250.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Walking in insects and most six-legged robots requires simultaneous control of up to 18 joints. Moreover the number of joints that are mechanically coupled via body and ground varies from one moment to the next, and external conditions such as friction, compliance and slope of the substrate are often unpredictable. Thus, walking behaviour requires adaptive, context-dependent control of many degrees of freedom. As a consequence, modelling legged locomotion addresses many aspects of any motor behaviour in general. Based on results from behavioural experiments on arthropods, we describe a kinematic model of hexapod walking: the distributed artificial neural network controller WALKNET. Conceptually, the model addresses three basic problems of legged locomotion. (I) First, coordination of several legs requires coupling between the step cycles of adjacent legs, optimising synergistic propulsion, but ensuring stability through flexible adjustment to external disturbances. A set of behaviourally derived leg coordination rules can account for decentralised generation of different gaits, and allows stable walking of the insect model as well as of a number of legged robots. (II) Second, a wide range of different leg movements must be possible, e.g. to search for foothold, grasp for objects or groom the body surface. We present a simple neural network controller that can simulate targeted swing trajectories, obstacle avoidance reflexes and cyclic searching-movements. (III) Third, control of mechanically coupled joints of the legs in stance is achieved by exploiting the physical interactions between body, legs and substrate. A local positive displacement feedback, acting on individual leg joints, transforms passive displacement of a joint into active movement, generating synergistic assistance reflexes in all mechanically coupled joints.
Erscheinungsjahr
Zeitschriftentitel
Arthropod.Struct.Dev.
Band
33
Zeitschriftennummer
3
Seite
237-250
ISSN
PUB-ID

Zitieren

Dürr V, Schmitz J, Cruse H. Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 2004;33(3):237-250.
Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev., 33(3), 237-250. doi:10.1016/j.asd.2004.05.004
Dürr, V., Schmitz, J., and Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 33, 237-250.
Dürr, V., Schmitz, J., & Cruse, H., 2004. Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev., 33(3), p 237-250.
V. Dürr, J. Schmitz, and H. Cruse, “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”, Arthropod.Struct.Dev., vol. 33, 2004, pp. 237-250.
Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 33, 237-250 (2004).
Dürr, Volker, Schmitz, Josef, and Cruse, Holk. “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”. Arthropod.Struct.Dev. 33.3 (2004): 237-250.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Intersegmental coupling and recovery from perturbations in freely running cockroaches.
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P., J Exp Biol 218(pt 2), 2015
PMID: 25609786
Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.
Mendes CS, Rajendren SV, Bartos I, Márka S, Mann RS., PLoS One 9(10), 2014
PMID: 25350743
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Büschges A., J Neurophysiol 108(5), 2012
PMID: 22673329
Tight turns in stick insects.
Cruse H, Ehmanns I, Stübner S, Schmitz J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(3), 2009
PMID: 19137316
Regulation of motor pattern frequency by reversals in proprioceptive feedback.
Smarandache CR, Daur N, Hedrich UB, Stein W., Eur J Neurosci 28(3), 2008
PMID: 18702718
Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking.
Quimby LA, Amer AS, Zill SN., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(3), 2006
PMID: 16362305
Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
Stein W, Büschges A, Bässler U., J Neurobiol 66(11), 2006
PMID: 16902990

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18089037
PubMed | Europe PMC

Suchen in

Google Scholar