Tight turns in stick insects

Cruse H, Ehmanns I, Stübner S, Schmitz J (2009)
Journal of Comparative Physiology A 195(3): 299-309.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
We investigated insects Carausius morosus walking whilst hanging upside down along a narrow 3 mm horizontal beam. At the end of the beam, the animal takes a 180 degrees turn. This is a difficult situation because substrate area is small and moves relative to the body during the turn. We investigated how leg movements are organised during this turn. A non-contact of either front leg appears to indicate the end of the beam. However, a turn can only begin if the hind legs stand in an appropriate position relative to each other; the outer hind leg must not be placed posterior to the inner hind leg. When starting the turn, both front legs are lifted and usually held in a relatively stable position and then the inner middle leg performs a swing-and-search movement: The leg begins a swing, which is continued by a searching movement to the side and to the rear, and eventually grasps the beam. At the same time the body is turned usually being supported by the outer middle leg and both hind legs. Then front legs followed by the outer middle leg reach the beam. A scheme describing the turns based on a few simple behavioural elements is proposed.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Cruse H, Ehmanns I, Stübner S, Schmitz J. Tight turns in stick insects. Journal of Comparative Physiology A. 2009;195(3):299-309.
Cruse, H., Ehmanns, I., Stübner, S., & Schmitz, J. (2009). Tight turns in stick insects. Journal of Comparative Physiology A, 195(3), 299-309.
Cruse, H., Ehmanns, I., Stübner, S., and Schmitz, J. (2009). Tight turns in stick insects. Journal of Comparative Physiology A 195, 299-309.
Cruse, H., et al., 2009. Tight turns in stick insects. Journal of Comparative Physiology A, 195(3), p 299-309.
H. Cruse, et al., “Tight turns in stick insects”, Journal of Comparative Physiology A, vol. 195, 2009, pp. 299-309.
Cruse, H., Ehmanns, I., Stübner, S., Schmitz, J.: Tight turns in stick insects. Journal of Comparative Physiology A. 195, 299-309 (2009).
Cruse, Holk, Ehmanns, Ingo, Stübner, Sebastian, and Schmitz, Josef. “Tight turns in stick insects”. Journal of Comparative Physiology A 195.3 (2009): 299-309.
This data publication is cited in the following publications:
This publication cites the following data publications:

2 Citations in Europe PMC

Data provided by Europe PubMed Central.

A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Huffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506

45 References

Data provided by Europe PubMed Central.


L, J Zool 238(), 1996

D, Biol Cybern 32(), 1979
Straight walking and turning on a slippery surface.
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138

AUTHOR UNKNOWN, 0
Many-legged maneuverability: dynamics of turning in hexapods
Jindrich DL, Full RJ., J. Exp. Biol. 202 (Pt 12)(), 1999
PMID: 10333507

T, Adaptive Behav 9(), 2002

TM, R Soc London 354(), 1999

KG, J Exp Biol 56(), 1972

KG, Intl J Robot Res 3(), 1984

RD, Autonomous Robots 11(3), 2001
Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
Ritzmann RE, Quinn RD, Fischer MS., Arthropod Struct Dev 33(3), 2004
PMID: 18089044

J, J Exp Biol 183(), 1993

J, J Exp Biol 143(), 1989

J, Appl Bionics Biomech 5(3), 2008

A, Intl J Robot Res 25(), 2006
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229

V, J Comp Physiol 97(), 1975

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19137316
PubMed | Europe PMC

Search this title in

Google Scholar