Inter-joint coupling and joint angle synergies of human catching movements

Bockemühl T, Troje NF, Dürr V (2010)
Hum.Movement Sci. 29(1): 73-93.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
A central question in motor control is how the central nervous system (CNS) deals with redundant degrees of freedom (DoFs) inherent in the musculoskeletal system. One way to simplify control of a redundant system is to combine several DoFs into synergies. In reaching movements of the human arm, redundancy occurs at the kinematic level because there is an unlimited number of arm postures for each position of the hand. Redundancy also occurs at the level of muscle forces because each arm posture can be maintained by a set of muscle activation patterns. Both postural and force-related motor synergies may contribute to simplify the control problem. The present study analyzes the kinematic complexity of natural, unrestrained human arm movements, and detects the amount of kinematic synergy in a vast variety of arm postures. We have measured inter-joint coupling of the human arm and shoulder girdle during fast, unrestrained, and untrained catching movements. Participants were asked to catch a ball launched towards them on 16 different trajectories. These had to be reached from two different initial positions. Movement of the right arm was recorded using optical motion capture and was transformed into 10 joint angle time courses, corresponding to 3 DoFs of the shoulder girdle and 7 of the arm. The resulting time series of the arm postures were analyzed by principal components analysis (PCA). We found that the first three principal components (PCs) always captured more than 97% of the variance. Furthermore, subspaces spanned by PC sets associated with different catching positions varied smoothly across the arm's workspace. When we pooled complete sets of movements, three PCs, the theoretical minimum for reaching in 3D space, were sufficient to explain 80% of the data's variance. We assumed that the linearly correlated DoFs of each significant PC represent cardinal joint angle synergies, and showed that catching movements towards a multitude of targets in the arm's workspace can be generated efficiently by linear combinations of three of such synergies. The contribution of each synergy changed during a single catching movement and often varied systematically with target location. We conclude that unrestrained, one-handed catching movements are dominated by strong kinematic couplings between the joints that reduce the kinematic complexity of the human arm and shoulder girdle to three non-redundant DoFs.
Erscheinungsjahr
Zeitschriftentitel
Hum.Movement Sci.
Band
29
Zeitschriftennummer
1
Seite
73-93
ISSN
PUB-ID

Zitieren

Bockemühl T, Troje NF, Dürr V. Inter-joint coupling and joint angle synergies of human catching movements. Hum.Movement Sci. 2010;29(1):73-93.
Bockemühl, T., Troje, N. F., & Dürr, V. (2010). Inter-joint coupling and joint angle synergies of human catching movements. Hum.Movement Sci., 29(1), 73-93. doi:10.1016/j.humov.2009.03.003
Bockemühl, T., Troje, N. F., and Dürr, V. (2010). Inter-joint coupling and joint angle synergies of human catching movements. Hum.Movement Sci. 29, 73-93.
Bockemühl, T., Troje, N.F., & Dürr, V., 2010. Inter-joint coupling and joint angle synergies of human catching movements. Hum.Movement Sci., 29(1), p 73-93.
T. Bockemühl, N.F. Troje, and V. Dürr, “Inter-joint coupling and joint angle synergies of human catching movements”, Hum.Movement Sci., vol. 29, 2010, pp. 73-93.
Bockemühl, T., Troje, N.F., Dürr, V.: Inter-joint coupling and joint angle synergies of human catching movements. Hum.Movement Sci. 29, 73-93 (2010).
Bockemühl, Till, Troje, Nikolaus F., and Dürr, Volker. “Inter-joint coupling and joint angle synergies of human catching movements”. Hum.Movement Sci. 29.1 (2010): 73-93.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
Merad M, de Montalivet É, Touillet A, Martinet N, Roby-Brami A, Jarrassé N., Front Neurorobot 12(), 2018
PMID: 29456499
Movement-Based Control for Upper-Limb Prosthetics: Is the Regression Technique the Key to a Robust and Accurate Control?
Legrand M, Merad M, de Montalivet E, Roby-Brami A, Jarrassé N., Front Neurorobot 12(), 2018
PMID: 30093857
Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
Proietti T, Guigon E, Roby-Brami A, Jarrassé N., J Neuroeng Rehabil 14(1), 2017
PMID: 28606179
A simple approach to guide factor retention decisions when applying principal component analysis to biomechanical data.
Fischer SL, Hampton RH, Albert WJ., Comput Methods Biomech Biomed Engin 17(3), 2014
PMID: 22519512
Upper limb joint space modeling of stroke induced synergies using isolated and voluntary arm perturbations.
Simkins M, Al-Refai AH, Rosen J., IEEE Trans Neural Syst Rehabil Eng 22(3), 2014
PMID: 23912501
Principal component modeling of isokinetic moment curves for discriminating between the injured and healthy knees of unilateral ACL deficient patients.
Almosnino S, Brandon SC, Day AG, Stevenson JM, Dvir Z, Bardana DD., J Electromyogr Kinesiol 24(1), 2014
PMID: 24280243
Motor primitives of pointing movements in a three-dimensional workspace.
Schütz C, Schack T., Exp Brain Res 227(3), 2013
PMID: 23604576
Discrimination of gender-, speed-, and shoe-dependent movement patterns in runners using full-body kinematics.
Maurer C, Federolf P, von Tscharner V, Stirling L, Nigg BM., Gait Posture 36(1), 2012
PMID: 22304784
Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation.
Crocher V, Sahbani A, Robertson J, Roby-Brami A, Morel G., IEEE Trans Neural Syst Rehabil Eng 20(3), 2012
PMID: 22481836

53 References

Daten bereitgestellt von Europe PubMed Central.

An operational analysis of a one-handed catching task using high speed photography.
Alderson GJ, Sully DJ, Sully HG., J Mot Behav 6(4), 1974
PMID: 23961836
Kinematic features of unrestrained vertical arm movements.
Atkeson CG, Hollerbach JM., J. Neurosci. 5(9), 1985
PMID: 4031998
Modelling the control of interceptive actions.
Beek PJ, Dessing JC, Peper CE, Bullock D., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358(1437), 2003
PMID: 14561342

Bernstein, 1967
Low dimensionality of supraspinally induced force fields.
d'Avella A, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 95(13), 1998
PMID: 9636215
Shared and specific muscle synergies in natural motor behaviors.
d'Avella A, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15708969
Combinations of muscle synergies in the construction of a natural motor behavior.
d'Avella A, Saltiel P, Bizzi E., Nat. Neurosci. 6(3), 2003
PMID: 12563264
PCA in studying coordination and variability: a tutorial.
Daffertshofer A, Lamoth CJ, Meijer OG, Beek PJ., Clin Biomech (Bristol, Avon) 19(4), 2004
PMID: 15109763
Principal component analysis of complex multijoint coordinative movements.
Forner-Cordero A, Levin O, Li Y, Swinnen SP., Biol Cybern 93(1), 2005
PMID: 16021517
Higher order motor control.
Georgopoulos AP., Annu. Rev. Neurosci. 14(), 1991
PMID: 2031575

Golub, 1989
Impairments of reaching movements in patients without proprioception. I. Spatial errors.
Gordon J, Ghilardi MF, Ghez C., J. Neurophysiol. 73(1), 1995
PMID: 7714577
Coordinating movement at two joints: a principle of linear covariance.
Gottlieb GL, Song Q, Hong DA, Almeida GL, Corcos D., J. Neurophysiol. 75(4), 1996
PMID: 8727412
Arm movements evoked by electrical stimulation in the motor cortex of monkeys.
Graziano MS, Aflalo TN, Cooke DF., J. Neurophysiol. 94(6), 2005
PMID: 16120657
Complex movements evoked by microstimulation of precentral cortex.
Graziano MS, Taylor CS, Moore T., Neuron 34(5), 2002
PMID: 12062029
Compensation for interaction torques during single- and multijoint limb movement.
Gribble PL, Ostry DJ., J. Neurophysiol. 82(5), 1999
PMID: 10561408
Optimal control of redundant muscles in step-tracking wrist movements.
Haruno M, Wolpert DM., J. Neurophysiol. 94(6), 2005
PMID: 16079196
Stopping rules in principal component analysis: A comparison of heuristical and statistical approaches
Jackson, Ecology 74(), 1993
Cerebral cortical mechanisms of reaching movements.
Kalaska JF, Crammond DJ., Science 255(5051), 1992
PMID: 1549781
The relation between posture and movement: A study of a simple synergy in a two-joint task
Latash, Human Movement Science 14(), 1995
The control and coordination of one-handed catching: the effect of temporal constraints.
Laurent M, Montagne G, Savelsbergh GJ., Exp Brain Res 101(2), 1994
PMID: 7843318
A method for the solution of certain nonlinear problems in least squares
Levenberg, Quarterly of Applied Mathematics 2(), 1944

Macpherson, 1991

Manly, 2004
An algorithm for least-squares estimation of nonlinear parameters
Marquardt, SIAM Journal on Applied Mathematics 11(), 1963
Reorganization of catching coordination under varying temporal constraints.
Mazyn LI, Montagne G, Savelsbergh GJ, Lenoir M., Motor Control 10(2), 2006
PMID: 16871010
Movement reversals in ball catching.
Montagne G, Laurent M, Durey A, Bootsma R., Exp Brain Res 129(1), 1999
PMID: 10550506
Spatial control of arm movements.
Morasso P., Exp Brain Res 42(2), 1981
PMID: 7262217
Linear combinations of primitives in vertebrate motor control.
Mussa-Ivaldi FA, Giszter SF, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 91(16), 1994
PMID: 8052615
Catching balls: How to get the hand to the right place at the right time
Peper, Journal of Experimental Psychology: Human Perception and Performance 20(), 1994
Principal components in three-ball cascade juggling.
Post AA, Daffertshofer A, Beek PJ., Biol Cybern 82(2), 2000
PMID: 10664101
Postural hand synergies for tool use.
Santello M, Flanders M, Soechting JF., J. Neurosci. 18(23), 1998
PMID: 9822764
Dissociation between hand motion and population vectors from neural activity in motor cortex.
Scott SH, Gribble PL, Graham KM, Cabel DW., Nature 413(6852), 2001
PMID: 11557980
Invariant characteristics of a pointing movement in man.
Soechting JF, Lacquaniti F., J. Neurosci. 1(7), 1981
PMID: 7346580
Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements.
Thomas JS, Corcos DM, Hasan Z., J. Neurophysiol. 93(1), 2004
PMID: 15342717
Neuromechanics of muscle synergies for posture and movement.
Ting LH, McKay JL., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18304801
Computational principles of movement neuroscience.
Wolpert DM, Ghahramani Z., Nat. Neurosci. 3 Suppl(), 2000
PMID: 11127840
Synergic analysis of upper limb target-reaching movements.
Yang N, Zhang M, Huang C, Jin D., J Biomech 35(6), 2002
PMID: 12020993
Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control
Zajac, Critical Reviews of Biomedical Engineering 17(), 1989

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19945187
PubMed | Europe PMC

Suchen in

Google Scholar