Image fusion for dynamic contrast enhanced magnetic resonance imaging

Twellmann T, Saalbach A, Gerstung O, Leach MO, Nattkemper TW (2004)
Biomed Eng Online 3(1): 35.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ;
Abstract / Bemerkung
BACKGROUND: Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. METHODS: In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. RESULTS: The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. CONCLUSION: Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.
Erscheinungsjahr
Zeitschriftentitel
Biomed Eng Online
Band
3
Zeitschriftennummer
1
Seite
35
ISSN
PUB-ID

Zitieren

Twellmann T, Saalbach A, Gerstung O, Leach MO, Nattkemper TW. Image fusion for dynamic contrast enhanced magnetic resonance imaging. Biomed Eng Online. 2004;3(1):35.
Twellmann, T., Saalbach, A., Gerstung, O., Leach, M. O., & Nattkemper, T. W. (2004). Image fusion for dynamic contrast enhanced magnetic resonance imaging. Biomed Eng Online, 3(1), 35. doi:10.1186/1475-925X-3-35
Twellmann, T., Saalbach, A., Gerstung, O., Leach, M. O., and Nattkemper, T. W. (2004). Image fusion for dynamic contrast enhanced magnetic resonance imaging. Biomed Eng Online 3, 35.
Twellmann, T., et al., 2004. Image fusion for dynamic contrast enhanced magnetic resonance imaging. Biomed Eng Online, 3(1), p 35.
T. Twellmann, et al., “Image fusion for dynamic contrast enhanced magnetic resonance imaging”, Biomed Eng Online, vol. 3, 2004, pp. 35.
Twellmann, T., Saalbach, A., Gerstung, O., Leach, M.O., Nattkemper, T.W.: Image fusion for dynamic contrast enhanced magnetic resonance imaging. Biomed Eng Online. 3, 35 (2004).
Twellmann, Thorsten, Saalbach, Axel, Gerstung, Olaf, Leach, Martin O, and Nattkemper, Tim Wilhelm. “Image fusion for dynamic contrast enhanced magnetic resonance imaging”. Biomed Eng Online 3.1 (2004): 35.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Color-coded visualization of magnetic resonance imaging multiparametric maps.
Kather JN, Weidner A, Attenberger U, Bukschat Y, Weis CA, Weis M, Schad LR, Zöllner FG., Sci Rep 7(), 2017
PMID: 28112222
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer VA, Lekadir K, Hoogendoorn C, Frangi AF, Piella G., Comput Med Imaging Graph 41(), 2015
PMID: 25008538
Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification.
Fusco R, Sansone M, Filice S, Granata V, Catalano O, Amato DM, Di Bonito M, D'Aiuto M, Capasso I, Rinaldo M, Petrillo A., Biomed Res Int 2015(), 2015
PMID: 26339597
Standardization of radiological evaluation of dynamic contrast enhanced MRI: application in breast cancer diagnosis.
Furman-Haran E, Feinberg MS, Badikhi D, Eyal E, Zehavi T, Degani H., Technol Cancer Res Treat 13(5), 2014
PMID: 24000989
Multidimensional methods for the formulation of biopharmaceuticals and vaccines.
Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR., J Pharm Sci 100(10), 2011
PMID: 21647886
Multiclass detection of cells in multicontrast composite images.
Long X, Cleveland WL, Yao YL., Comput Biol Med 40(2), 2010
PMID: 20022596
Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer.
Eyal E, Bloch BN, Rofsky NM, Furman-Haran E, Genega EM, Lenkinski RE, Degani H., Invest Radiol 45(4), 2010
PMID: 20177391
Principal component analysis of breast DCE-MRI adjusted with a model-based method.
Eyal E, Badikhi D, Furman-Haran E, Kelcz F, Kirshenbaum KJ, Degani H., J Magn Reson Imaging 30(5), 2009
PMID: 19856419

31 References

Daten bereitgestellt von Europe PubMed Central.


Schölkopf B, Smola A, Müller K., 1999
ROC Graphs: Notes and Practical Considerations for Researchers
Fawcett T., 2003
Receiver operating characteristic (ROC) methodology: the state of the art.
Hanley JA., Crit Rev Diagn Imaging 29(3), 1989
PMID: 2667567
A threshold selection method from gray level histograms
Otsu N., 1979

Sonka M, Hlavac V, Boyle R., 1998
LAPACK – Linear Algebra PACKage
AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 15494072
PubMed | Europe PMC

Suchen in

Google Scholar