Chemical tools for activity-based proteomics

Hagenstein MC, Sewald N (2006)
J Biotechnol 124(1): 56-73.

No fulltext has been uploaded. References only!
Journal Article | Review | Published | English

No fulltext has been uploaded

Several approaches for proteome analysis and the generation of proteome subsets rely on engineered chemical probes that are tailored towards the detection of different protein classes. The concepts are presented in this review covering the literature until mid-2005.
Publishing Year

Cite this

Hagenstein MC, Sewald N. Chemical tools for activity-based proteomics. J Biotechnol. 2006;124(1):56-73.
Hagenstein, M. C., & Sewald, N. (2006). Chemical tools for activity-based proteomics. J Biotechnol, 124(1), 56-73. doi:10.1016/j.jbiotec.2005.12.005
Hagenstein, M. C., and Sewald, N. (2006). Chemical tools for activity-based proteomics. J Biotechnol 124, 56-73.
Hagenstein, M.C., & Sewald, N., 2006. Chemical tools for activity-based proteomics. J Biotechnol, 124(1), p 56-73.
M.C. Hagenstein and N. Sewald, “Chemical tools for activity-based proteomics”, J Biotechnol, vol. 124, 2006, pp. 56-73.
Hagenstein, M.C., Sewald, N.: Chemical tools for activity-based proteomics. J Biotechnol. 124, 56-73 (2006).
Hagenstein, Miriam C, and Sewald, Norbert. “Chemical tools for activity-based proteomics”. J Biotechnol 124.1 (2006): 56-73.
This data publication is cited in the following publications:
This publication cites the following data publications:

24 Citations in Europe PMC

Data provided by Europe PubMed Central.

Inhibitor-based affinity probes for the investigation of JAK signaling pathways.
Hofener M, Pachl F, Kuster B, Sewald N., Proteomics 15(17), 2015
PMID: 25959371
Qualitative analysis of the fluorophosphonate-based chemical probes using the serine hydrolases from mouse liver and poly-3-hydroxybutyrate depolymerase (PhaZ) from Bacillus thuringiensis.
Huang YL, Chung TW, Chang CM, Chen CH, Liao CC, Tsay YG, Shaw GC, Liaw SH, Sun CM, Lin CH., Anal Bioanal Chem 404(8), 2012
PMID: 22941070
Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia.
Soragni E, Xu C, Plasterer HL, Jacques V, Rusche JR, Gottesfeld JM., J. Child Neurol. 27(9), 2012
PMID: 22764181
Glycine fluoromethylketones as SENP-specific activity based probes.
Dobrota C, Fasci D, Hadade ND, Roiban GD, Pop C, Meier VM, Dumitru I, Matache M, Salvesen GS, Funeriu DP., Chembiochem 13(1), 2012
PMID: 22134988
Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe.
Lenger J, Kaschani F, Lenz T, Dalhoff C, Villamor JG, Koster H, Sewald N, van der Hoorn RA., Bioorg. Med. Chem. 20(2), 2012
PMID: 21775155
Cysteine tagging for MS-based proteomics.
Giron P, Dayon L, Sanchez JC., Mass Spectrom Rev 30(3), 2011
PMID: 21500242
A universal and ready-to-use heterotrifunctional cross-linking reagent for facile synthetic access to sophisticated bioconjugates.
Clave G, Volland H, Flaender M, Gasparutto D, Romieu A, Renard PY., Org. Biomol. Chem. 8(19), 2010
PMID: 20694211
Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling.
Zhang H, Brown RN, Qian WJ, Monroe ME, Purvine SO, Moore RJ, Gritsenko MA, Shi L, Romine MF, Fredrickson JK, Pasa-Tolic L, Smith RD, Lipton MS., J. Proteome Res. 9(5), 2010
PMID: 20380418
Fluorescence quenched quinone methide based activity probes--a cautionary tale.
Sellars JD, Landrum M, Congreve A, Dixon DP, Mosely JA, Beeby A, Edwards R, Steel PG., Org. Biomol. Chem. 8(7), 2010
PMID: 20237672
Mining the active proteome in plant science and biotechnology.
Kolodziejek I, van der Hoorn RA., Curr. Opin. Biotechnol. 21(2), 2010
PMID: 20197235
Facile and rapid access to linear and truncated microcystin analogues for the implementation of immunoassays.
Clave G, Ronco C, Boutal H, Kreich N, Volland H, Franck X, Romieu A, Renard PY., Org. Biomol. Chem. 8(3), 2010
PMID: 20090987
Chemical probes identify a role for histone deacetylase 3 in Friedreich's ataxia gene silencing.
Xu C, Soragni E, Chou CJ, Herman D, Plasterer HL, Rusche JR, Gottesfeld JM., Chem. Biol. 16(9), 2009
PMID: 19778726
Target profiling of small molecules by chemical proteomics.
Rix U, Superti-Furga G., Nat. Chem. Biol. 5(9), 2009
PMID: 19690537
The current state of proteomics in GI oncology.
Lin Y, Dynan WS, Lee JR, Zhu ZH, Schade RR., Dig. Dis. Sci. 54(3), 2009
PMID: 19104933
Affinity-based labeling of cytohesins with a bifunctional SecinH3 photoaffinity probe.
Bi X, Schmitz A, Hayallah AM, Song JN, Famulok M., Angew. Chem. Int. Ed. Engl. 47(49), 2008
PMID: 18972479
The use of proteomics to identify novel therapeutic targets for the treatment of disease.
Moseley FL, Bicknell KA, Marber MS, Brooks G., J. Pharm. Pharmacol. 59(5), 2007
PMID: 17524226
Probing glycomics.
Timmer MS, Stocker BL, Seeberger PH., Curr Opin Chem Biol 11(1), 2007
PMID: 17208037
Molecular tools for metalloprotease sub-proteome generation.
Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N., J. Biotechnol. 129(2), 2007
PMID: 17207876
A new chemical probe for the detection of the cancer-linked galectin-3.
Ballell L, van Scherpenzeel M, Buchalova K, Liskamp RM, Pieters RJ., Org. Biomol. Chem. 4(23), 2006
PMID: 17102885

92 References

Data provided by Europe PubMed Central.

Chemical strategies for activity-based proteomics.
Speers AE, Cravatt BF., Chembiochem 5(1), 2004
PMID: 14695510
Profiling enzyme activities in vivo using click chemistry methods.
Speers AE, Cravatt BF., Chem. Biol. 11(4), 2004
PMID: 15123248
Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones.
Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT., Biochemistry 33(13), 1994
PMID: 8142397
Design and synthesis of activity probes for glycosidases.
Tsai CS, Li YK, Lo LC., Org. Lett. 4(21), 2002
PMID: 12375899
Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.
Unlu M, Morgan ME, Minden JS., Electrophoresis 18(11), 1997
PMID: 9420172
Dissecting protein function using chemical proteomic methods
Verhelst, QSAR Comb. Sci. 24(), 2005
Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG., J. Am. Chem. Soc. 125(11), 2003
PMID: 12630856
Large-scale analysis of the yeast proteome by multidimensional protein identification technology.
Washburn MP, Wolters D, Yates JR 3rd., Nat. Biotechnol. 19(3), 2001
PMID: 11231557
Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium.
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I., Electrophoresis 16(7), 1995
PMID: 7498152
Profiling protein function with small molecule microarrays.
Winssinger N, Ficarro S, Schultz PG, Harris JL., Proc. Natl. Acad. Sci. U.S.A. 99(17), 2002
PMID: 12167675
Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors.
Wissing J, Godl K, Brehmer D, Blencke S, Weber M, Habenberger P, Stein-Gerlach M, Missio A, Cotten M, Muller S, Daub H., Mol. Cell Proteomics 3(12), 2004
PMID: 15475568
Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry
Zhou, Nature Biotechnol. 19(), 2002
Activity-based fluorescent probes that target phosphatases
Zhu, Tetrahedron Lett. 44(), 2003
Developing novel activity-based fluorescent probes that target different classes of proteases
Zhu, Chem. Commun. 13(), 2004


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 16442651
PubMed | Europe PMC

Search this title in

Google Scholar