SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL

BERG BA, HANSMANN U, Neuhaus T (1993)
PHYSICAL REVIEW B 47(1): 497-500.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
In analogy with a recently proposed multicanonical ensemble we introduce an ensemble where the partition function is simulated with a term in the action containing a varying magnetic field. Using this ensemble we demonstrate on lattices with periodic boundary conditions that it is possible to enhance the appearance of order-order interfaces by many orders of magnitude. To perform a stringent test of the method we consider the D = 2 Ising model at beta = 0.5 and simulate square lattices up to size 100 x 100. By a finite-size scaling analysis, the order-order interface tension per unit area is obtained. Our best infinite-volume extrapolation is in excellent agreement with Onsager's exact result.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

BERG BA, HANSMANN U, Neuhaus T. SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL. PHYSICAL REVIEW B. 1993;47(1):497-500.
BERG, B. A., HANSMANN, U., & Neuhaus, T. (1993). SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL. PHYSICAL REVIEW B, 47(1), 497-500.
BERG, B. A., HANSMANN, U., and Neuhaus, T. (1993). SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL. PHYSICAL REVIEW B 47, 497-500.
BERG, B.A., HANSMANN, U., & Neuhaus, T., 1993. SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL. PHYSICAL REVIEW B, 47(1), p 497-500.
B.A. BERG, U. HANSMANN, and T. Neuhaus, “SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL”, PHYSICAL REVIEW B, vol. 47, 1993, pp. 497-500.
BERG, B.A., HANSMANN, U., Neuhaus, T.: SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL. PHYSICAL REVIEW B. 47, 497-500 (1993).
BERG, BA, HANSMANN, U, and Neuhaus, Thomas. “SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL”. PHYSICAL REVIEW B 47.1 (1993): 497-500.
This data publication is cited in the following publications:
This publication cites the following data publications:

22 Citations in Europe PMC

Data provided by Europe PubMed Central.

Multidimensional generalized-ensemble algorithms for complex systems.
Mitsutake A, Okamoto Y., J Chem Phys 130(21), 2009
PMID: 19508054
Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.
Mognetti BM, Yelash L, Virnau P, Paul W, Binder K, Muller M, MacDowell LG., J Chem Phys 128(10), 2008
PMID: 18345900
Wang-Landau algorithm: a theoretical analysis of the saturation of the error.
Belardinelli RE, Pereyra VD., J Chem Phys 127(18), 2007
PMID: 18020628
Fast algorithm to calculate density of states.
Belardinelli RE, Pereyra VD., Phys Rev E Stat Nonlin Soft Matter Phys 75(4 Pt 2), 2007
PMID: 17501010
Critical behavior of a colloid-polymer mixture confined between walls.
Vink RL, Binder K, Horbach J., Phys Rev E Stat Nonlin Soft Matter Phys 73(5 Pt 2), 2006
PMID: 16803009
Phase transitions in nanosystems caused by interface motion: the Ising bipyramid with competing surface fields.
Milchev A, Muller M, Binder K., Phys Rev E Stat Nonlin Soft Matter Phys 72(3 Pt 1), 2005
PMID: 16241450
First-order interface localization-delocalization transition in thin Ising films using Wang-Landau sampling.
Schulz BJ, Binder K, Muller M., Phys Rev E Stat Nonlin Soft Matter Phys 71(4 Pt 2), 2005
PMID: 15903816
Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility, and coexistence diameter.
Vink RL, Horbach J, Binder K., Phys Rev E Stat Nonlin Soft Matter Phys 71(1 Pt 1), 2005
PMID: 15697597
Multioverlap simulations for transitions between reference configurations.
Berg BA, Noguchi H, Okamoto Y., Phys Rev E Stat Nonlin Soft Matter Phys 68(3 Pt 2), 2003
PMID: 14524851
Overlap distribution of the three-dimensional Ising model.
Berg BA, Billoire A, Janke W., Phys Rev E Stat Nonlin Soft Matter Phys 66(4 Pt 2), 2002
PMID: 12443274
Effect of angular momentum on equilibrium properties of a self-gravitating system.
Fliegans O, Gross DH., Phys Rev E Stat Nonlin Soft Matter Phys 65(4 Pt 2A), 2002
PMID: 12005962
Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram.
Wang F, Landau DP., Phys Rev E Stat Nonlin Soft Matter Phys 64(5 Pt 2), 2001
PMID: 11736008
Entropy-based analysis of the number partitioning problem.
Lima AR, Argollo de Menezes M., Phys Rev E Stat Nonlin Soft Matter Phys 63(2 Pt 1), 2001
PMID: 11308453
Simulation of phase transitions in fluids.
de Pablo JJ, Yan Q, Escobedo FA., Annu Rev Phys Chem 50(), 1999
PMID: 15012417
Method to study relaxation of metastable phases: Macroscopic mean-field dynamics.
Lee J, Novotny MA, Rikvold PA., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52(1), 1995
PMID: 9963440
Multicanonical multigrid Monte Carlo method.
Janke W, Sauer T., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(4), 1994
PMID: 9961616
Computing masses from effective transfer matrices.
Hasenbusch M, Pinn K, Rummukainen K., Phys. Rev., D 49(1), 1994
PMID: 10016787

15 References

Data provided by Europe PubMed Central.


AUTHOR UNKNOWN, nucl phys b333(), 1990

AUTHOR UNKNOWN, nucl phys b353(), 1991

AUTHOR UNKNOWN, z krist mineral 34(), 1901

AUTHOR UNKNOWN, nucl phys b322(), 1989
Surface tension in finite-temperature quantum chromodynamics.
Huang S, Potvin J, Rebbi C, Sanielevici S., Phys. Rev., D 42(8), 1990
PMID: 10013158
Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models
Binder, Physical Review A 25(3), 1982
Exact equilibrium crystal shapes at nonzero temperature in two dimensions
Rottman, Physical Review B 24(11), 1981
Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition
Onsager, Physical Review 65(3-4), 1944
Multicanonical algorithms for first order phase transitions
Berg, Physics Letters B 267(2), 1991
Interface tension and structure at Tc in the Potts model
Kajantie, Physics Letters B 223(2), 1989
Surface tension from finite-volume vacuum tunneling in the 3D Ising model
Meyer-Ortmanns, Journal of Statistical Physics 58(1-2), 1990
The droplet in the tube: A case of phase transition in the canonical ensemble
Shlosman, Communications in Mathematical Physics 125(1), 1989
Finite size scaling analysis of ising model block distribution functions
Binder, Zeitschrift für Physik B Condensed Matter 43(2), 1981

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10004471
PubMed | Europe PMC

Inspire 318670

Search this title in

Google Scholar