STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY

REINEMER P, GRAMS F, HUBER R, KLEINE T, SCHNIERER S, PIPER M, Tschesche H, BODE W (1994)
FEBS LETTERS 338(2): 227-233.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
For the collagenases PMNL-CL and FIB-CL, the presence of the N-terminal Phe(79) correlates with an increase in proteolytic activity. We have determined the X-ray crystal structure of the recombinant Phe(79)-Gly(242) Catalytic domain of human neutrophil collagenase (PMNL-CL, MMP-8) using the recently solved model of the Met(80)-Gly(242) form for phasing and subsequently refined it to a final crystalographic R-factor of 18.0% at 2.5 Angstrom resolution. The PMNL-CL catalytic domain is a spherical molecule with a flat active site cleft separating a smaller C-terminal subdomain from a bigger N-terminal domain, that harbours two zinc ions, namely a 'structural' and a 'catalytic' zinc, and two calcium ions. The N-terminal segment prior to Pro(86), which is disordered in the Met(80)-Gly(242) form, packs against a concave hydrophobic surface made by the C-terminal helix. The N-terminal Phe(79) ammonium group makes a salt link with the side chain carboxylate group of the strictly conserved Asp(232). Stabilization of the catalytic site might be conferred via strong hydrogen bonds made by the adjacent, likewise strictly conserved Asp(233) With the characteristic 'Met-turn', which forms the base of the active site residues.
Publishing Year
ISSN
PUB-ID

Cite this

REINEMER P, GRAMS F, HUBER R, et al. STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY. FEBS LETTERS. 1994;338(2):227-233.
REINEMER, P., GRAMS, F., HUBER, R., KLEINE, T., SCHNIERER, S., PIPER, M., Tschesche, H., et al. (1994). STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY. FEBS LETTERS, 338(2), 227-233. doi:10.1016/0014-5793(94)80370-6
REINEMER, P., GRAMS, F., HUBER, R., KLEINE, T., SCHNIERER, S., PIPER, M., Tschesche, H., and BODE, W. (1994). STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY. FEBS LETTERS 338, 227-233.
REINEMER, P., et al., 1994. STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY. FEBS LETTERS, 338(2), p 227-233.
P. REINEMER, et al., “STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY”, FEBS LETTERS, vol. 338, 1994, pp. 227-233.
REINEMER, P., GRAMS, F., HUBER, R., KLEINE, T., SCHNIERER, S., PIPER, M., Tschesche, H., BODE, W.: STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY. FEBS LETTERS. 338, 227-233 (1994).
REINEMER, P, GRAMS, F, HUBER, R, KLEINE, T, SCHNIERER, S, PIPER, M, Tschesche, Harald, and BODE, W. “STRUCTURAL IMPLICATIONS FOR THE ROLE OF THE N-TERMINUS IN THE SUPERACTIVATION OF COLLAGENASES - A CRYSTALLOGRAPHIC STUDY”. FEBS LETTERS 338.2 (1994): 227-233.
This data publication is cited in the following publications:
This publication cites the following data publications:

57 Citations in Europe PMC

Data provided by Europe PubMed Central.

Structural features of a superfamily of zinc-endopeptidases: the metzincins.
Stöcker W, Bode W., Curr Opin Struct Biol 5(3), 1995
PMID: 7583637
Neutrophil procollagenase can be activated by stromelysin-2.
Knäuper V, Murphy G, Tschesche H., Ann N Y Acad Sci 732(), 1994
PMID: 7978810
Inhibition of matrix metalloproteinases in rheumatoid arthritis and the crystallographic binding mode of a peptide inhibitor.
Tschesche H, Bläser J, Kleine T, Schnierer S, Reinemer P, Bode W, Maasjoshusmann U, Fricke C., Ann N Y Acad Sci 732(), 1994
PMID: 7978819

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 8307185
PubMed | Europe PMC

Search this title in

Google Scholar