X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN

GRAMS F, REINEMER P, POWERS JC, KLEINE T, PIEPER M, Tschesche H, HUBER R, BODE W (1995)
EUROPEAN JOURNAL OF BIOCHEMISTRY 228(3): 830-841.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases involved in tissue remodeling. They have also been implicated in various disease processes including tumour invasion and joint destruction and are therefore attractive targets for inhibitor design. For rational drug design, information of inhibitor binding at the atomic level is essential. Recently, we have published the refined high-resolution crystal structure of the catalytic domain of human neutrophil collagenase (HNC) complexed with the inhibitor Pro-Leu-Gly-NHOH, which is a mimic for the unprimed (P3-P1) residues of a bound peptide substrate. We have now determined two additional HNC complexes formed with the thiol inhibitor HSCH2CH(CH(2)Ph)CO-L-Ala-Gly-NH2 and another hydroxamate inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2,, which were both refined to R-values of 0.183/0.198 at 0.240/0.225-nm resolution. The inhibitor thiol and hydroxamate groups ligand the catalytic zinc, giving rise to a slightly distorted tetrahedral and trigonal-bipyramidal coordination sphere, respectively. The thiol inhibitor diastereomer with S-configuration at the P1' residue (corresponding to an L-amino acid analog) binds to HNC. Its peptidyl moiety mimics binding of primed (P1'-P3') residues of the substrate. In combination with our first structure a continuous hexapeptide corresponding to a peptide substrate productively bound to HNC was constructed and energy-minimized. Proteolytic cleavage of this Michaelis complex is probably general base-catalyzed as proposed for thermolysin, i.e. a glutamate assists nucleophilic attack of a water molecule. Although there are many structural and mechanistic similarities to thermolysin, substrate binding to MMPs differs due to the interactions beyond S1'-P1' While thermolysin binds substrates with a kink at P1', substrates are bound in an extended conformation in the collagenases. This property explains the tolerance of thermolysin for D-amino acid residues at the P1' position, in contrast to the collagenases. The third inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2, unexpectedly binds in a different manner than anticipated from its design and binding mode in thermolysin. Its hydroxamate group obviously interacts with the catalytic zinc in a favourable bidentate manner, but in contrast its isobutyl (iBu) side chain remains outside of the S1' pocket, presumably due to severe constraints imposed by the adjacent planar hydroxamate group. Instead, the C-terminal Ala-Gly-NH2 tail adopts a bent conformation and inserts into this S1' pocket, presumably in a non-optimized manner. Both the isobutyl side chain and the C-terminal peptide tail could be replaced by other, better fitting groups. Thus this inhibitor seems to represent a new lead structure suitable for designing better drugs.
Erscheinungsjahr
Zeitschriftentitel
EUROPEAN JOURNAL OF BIOCHEMISTRY
Band
228
Ausgabe
3
Seite(n)
830-841
ISSN
eISSN
PUB-ID

Zitieren

GRAMS F, REINEMER P, POWERS JC, et al. X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN. EUROPEAN JOURNAL OF BIOCHEMISTRY. 1995;228(3):830-841.
GRAMS, F., REINEMER, P., POWERS, J. C., KLEINE, T., PIEPER, M., Tschesche, H., HUBER, R., et al. (1995). X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN. EUROPEAN JOURNAL OF BIOCHEMISTRY, 228(3), 830-841. doi:10.1111/j.1432-1033.1995.tb20329.x
GRAMS, F., REINEMER, P., POWERS, J. C., KLEINE, T., PIEPER, M., Tschesche, H., HUBER, R., and BODE, W. (1995). X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN. EUROPEAN JOURNAL OF BIOCHEMISTRY 228, 830-841.
GRAMS, F., et al., 1995. X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN. EUROPEAN JOURNAL OF BIOCHEMISTRY, 228(3), p 830-841.
F. GRAMS, et al., “X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN”, EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 228, 1995, pp. 830-841.
GRAMS, F., REINEMER, P., POWERS, J.C., KLEINE, T., PIEPER, M., Tschesche, H., HUBER, R., BODE, W.: X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN. EUROPEAN JOURNAL OF BIOCHEMISTRY. 228, 830-841 (1995).
GRAMS, F, REINEMER, P, POWERS, JC, KLEINE, T, PIEPER, M, Tschesche, Harald, HUBER, R, and BODE, W. “X-RAY STRUCTURES OF HUMAN NEUTROPHIL COLLAGENASE COMPLEXED WITH PEPTIDE HYDROXAMATE AND PEPTIDE THIOL INHIBITORS - IMPLICATIONS FOR SUBSTRATE-BINDING AND RATIONAL DRUG DESIGN”. EUROPEAN JOURNAL OF BIOCHEMISTRY 228.3 (1995): 830-841.

78 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling.
Hermenean A, Mariasiu T, Navarro-González I, Vegara-Meseguer J, Miuțescu E, Chakraborty S, Pérez-Sánchez H., Exp Ther Med 13(5), 2017
PMID: 28565752
A novel mechanism of latency in matrix metalloproteinases.
López-Pelegrín M, Ksiazek M, Karim AY, Guevara T, Arolas JL, Potempa J, Gomis-Rüth FX., J Biol Chem 290(8), 2015
PMID: 25555916
Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product.
Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, Paul LN, Das C., Biochemistry 53(19), 2014
PMID: 24787148
Potent tumor targeting drug release system comprising MMP-2 specific peptide fragment with self-assembling characteristics.
Hua D, Kong W, Zheng X, Zhou Z, Yu B, Li Y, Wang Y, Yang X, Liu C, Tang L, Li Y, Gong M., Drug Des Devel Ther 8(), 2014
PMID: 25342883
Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils.
Flynn BP, Tilburey GE, Ruberti JW., Biomech Model Mechanobiol 12(2), 2013
PMID: 22584606
Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis.
Bertini I, Fragai M, Luchinat C, Melikian M, Toccafondi M, Lauer JL, Fields GB., J Am Chem Soc 134(4), 2012
PMID: 22239621
Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1.
Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, Murphy G, Enghild JJ, Hohenester E, Nagase H., Proc Natl Acad Sci U S A 109(31), 2012
PMID: 22761315
Conformational selection and collagenolysis in type III collagen.
Salsas-Escat R, Stultz CM., Proteins 78(2), 2010
PMID: 19731369
A peptide hydroxamate library for enrichment of metalloproteinases: towards an affinity-based metalloproteinase profiling protocol.
Geurink P, Klein T, Leeuwenburgh M, van der Marel G, Kauffman H, Bischoff R, Overkleeft H., Org Biomol Chem 6(7), 2008
PMID: 18362965
Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs.
Verma RP, Hansch C., Bioorg Med Chem 15(6), 2007
PMID: 17275314
Phosph(on)ate as a zinc-binding group in metalloenzyme inhibitors: X-ray crystal structure of the antiviral drug foscarnet complexed to human carbonic anhydrase I.
Temperini C, Innocenti A, Guerri A, Scozzafava A, Rusconi S, Supuran CT., Bioorg Med Chem Lett 17(8), 2007
PMID: 17314045
In search of partners: linking extracellular proteases to substrates.
Overall CM, Blobel CP., Nat Rev Mol Cell Biol 8(3), 2007
PMID: 17299501
Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity.
Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Pourmotabbed T, Bode W, Goettig P., J Mol Biol 371(4), 2007
PMID: 17599356
Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases.
Hu J, Van den Steen PE, Sang QX, Opdenakker G., Nat Rev Drug Discov 6(6), 2007
PMID: 17541420
N-hydroxyurea--a versatile zinc binding function in the design of metalloenzyme inhibitors.
Temperini C, Innocenti A, Scozzafava A, Supuran CT., Bioorg Med Chem Lett 16(16), 2006
PMID: 16759856
Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs.
Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D, Matziari M, Yiotakis A, Dive V., Biochimie 87(3-4), 2005
PMID: 15781327
Design, modelling, synthesis and biological evaluation of peptidomimetic phosphinates as inhibitors of matrix metalloproteinases MMP-2 and MMP-8.
Bianchini G, Aschi M, Cavicchio G, Crucianelli M, Preziuso S, Gallina C, Nastari A, Gavuzzo E, Mazza F., Bioorg Med Chem 13(15), 2005
PMID: 15935680
A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands.
Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S., J Med Chem 48(17), 2005
PMID: 16107143
The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor.
Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC., Nat Struct Mol Biol 11(1), 2004
PMID: 14718924
Crystal structure of the catalytic domain of human ADAM33.
Orth P, Reichert P, Wang W, Prosise WW, Yarosh-Tomaine T, Hammond G, Ingram RN, Xiao L, Mirza UA, Zou J, Strickland C, Taremi SS, Le HV, Madison V., J Mol Biol 335(1), 2004
PMID: 14659745
Crystal structure of the catalytic domain of MMP-16/MT3-MMP: characterization of MT-MMP specific features.
Lang R, Braun M, Sounni NE, Noel A, Frankenne F, Foidart JM, Bode W, Maskos K., J Mol Biol 336(1), 2004
PMID: 14741217
A practical approach to docking of zinc metalloproteinase inhibitors.
Hu X, Balaz S, Shelver WH., J Mol Graph Model 22(4), 2004
PMID: 15177081
Human ADAM33: protein maturation and localization.
Garlisi CG, Zou J, Devito KE, Tian F, Zhu FX, Liu J, Shah H, Wan Y, Motasim Billah M, Egan RW, Umland SP., Biochem Biophys Res Commun 301(1), 2003
PMID: 12535637
Structural aspects of the metzincin clan of metalloendopeptidases.
Gomis-Rüth FX., Mol Biotechnol 24(2), 2003
PMID: 12746556
Enzyme-catalyzed gel proteolysis: an anomalous diffusion-controlled mechanism.
Fadda GC, Lairez D, Arrio B, Carton JP, Larreta-Garde V., Biophys J 85(5), 2003
PMID: 14581186
Matrix metalloproteinases and collagen catabolism.
Lauer-Fields JL, Juska D, Fields GB., Biopolymers 66(1), 2002
PMID: 12228918
Computational study of the catalytic domain of human neutrophil collagenase. specific role of the S3 and S'3 subsites in the interaction with a phosphonate inhibitor.
Aschi M, Roccatano D, Di Nola A, Gallina C, Gavuzzo E, Pochetti G, Pieper M, Tschesche H, Mazza F., J Comput Aided Mol Des 16(3), 2002
PMID: 12363219
Triple-helical peptide analysis of collagenolytic protease activity.
Lauer-Fields JL, Fields GB., Biol Chem 383(7-8), 2002
PMID: 12437092
Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: design, synthesis and structure-activity relationship.
Matter H, Schudok M, Schwab W, Thorwart W, Barbier D, Billen G, Haase B, Neises B, Weithmann K, Wollmann T., Bioorg Med Chem 10(11), 2002
PMID: 12213468
Preclinical development of metalloproteasis inhibitors in cancer therapy.
Giavazzi R, Taraboletti G., Crit Rev Oncol Hematol 37(1), 2001
PMID: 11164719
The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity.
Knäuper V, Patterson ML, Gomis-Rüth FX, Smith B, Lyons A, Docherty AJ, Murphy G., Eur J Biochem 268(6), 2001
PMID: 11248710
Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors.
Grams F, Brandstetter H, D'Alò S, Geppert D, Krell HW, Leinert H, Livi V, Menta E, Oliva A, Zimmermann G, Gram F, Brandstetter H, D'Alò S, Geppert D, Krell HW, Leinert H, Livi VMenta E, Oliva A, Zimmermann G., Biol Chem 382(8), 2001
PMID: 11592410
Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure.
Lang R, Kocourek A, Braun M, Tschesche H, Huber R, Bode W, Maskos K., J Mol Biol 312(4), 2001
PMID: 11575928
Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases.
Ottl J, Gabriel D, Murphy G, Knäuper V, Tominaga Y, Nagase H, Kröger M, Tschesche H, Bode W, Moroder L., Chem Biol 7(2), 2000
PMID: 10662694
Expression of human membrane type 1 matrix metalloproteinase in Pichia pastoris.
Roderfeld M, Büttner FH, Bartnik E, Tschesche H., Protein Expr Purif 19(3), 2000
PMID: 10910727
Phosphonate inhibitors of adamalysin II and matrix metalloproteinases.
Gallina C, Gavuzzo E, Giordano C, Gorini B, Mazza F, Paglialunga-Paradisi M, Panini G, Pochetti G, Politi V., Ann N Y Acad Sci 878(), 1999
PMID: 10415812
The synthesis and biological evaluation of non-peptidic matrix metalloproteinase inhibitors.
Martin FM, Beckett RP, Bellamy CL, Courtney PF, Davies SJ, Drummond AH, Dodd R, Pratt LM, Patel SR, Ricketts ML, Todd RS, Tuffnell AR, Ward JW, Whittaker M., Bioorg Med Chem Lett 9(19), 1999
PMID: 10522712
Conformational homogeneity in molecular recognition by proteolytic enzymes.
Tyndall JD, Fairlie DP., J Mol Recognit 12(6), 1999
PMID: 10611646
Matrix metalloproteases: variations on a theme.
Borkakoti N., Prog Biophys Mol Biol 70(1), 1998
PMID: 9785958
Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme.
Maskos K, Fernandez-Catalan C, Huber R, Bourenkov GP, Bartunik H, Ellestad GA, Reddy P, Wolfson MF, Rauch CT, Castner BJ, Davis R, Clarke HR, Petersen M, Fitzner JN, Cerretti DP, March CJ, Paxton RJ, Black RA, Bode W., Proc Natl Acad Sci U S A 95(7), 1998
PMID: 9520379
Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data.
Brandstetter H, Engh RA, Von Roedern EG, Moroder L, Huber R, Bode W, Grams F., Protein Sci 7(6), 1998
PMID: 9655333
The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63).
Schlagenhauf E, Etges R, Metcalf P., Structure 6(8), 1998
PMID: 9739094
Analysis of zinc binding sites in protein crystal structures.
Alberts IL, Nadassy K, Wodak SJ., Protein Sci 7(8), 1998
PMID: 10082367
2 angstrom X-ray structure of adamalysin II complexed with a peptide phosphonate inhibitor adopting a retro-binding mode.
Cirilli M, Gallina C, Gavuzzo E, Giordano C, Gomis-Rüth FX, Gorini B, Kress LF, Mazza F, Paradisi MP, Pochetti G, Politi V., FEBS Lett 418(3), 1997
PMID: 9428736
Non-peptidic cysteine derivatives as inhibitors of matrix metalloproteinases.
Müller JC, von Roedern EG, Grams F, Nagase H, Moroder L., Biol Chem 378(12), 1997
PMID: 9461346
Comparison of the structure of human recombinant short form stromelysin by multidimensional heteronuclear NMR and X-ray crystallography.
Gooley PR, O'Connell JF, Marcy AI, Cuca GC, Axel MG, Caldwell CG, Hagmann WK, Becker JW., J Biomol NMR 7(1), 1996
PMID: 8720828
Collagenase: a key enzyme in collagen turnover.
Shingleton WD, Hodges DJ, Brick P, Cawston TE., Biochem Cell Biol 74(6), 1996
PMID: 9164646
A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
Huber R, Hof P, Duarte RO, Moura JJ, Moura I, Liu MY, LeGall J, Hille R, Archer M, Romão MJ., Proc Natl Acad Sci U S A 93(17), 1996
PMID: 8799115
Structural features of a superfamily of zinc-endopeptidases: the metzincins.
Stöcker W, Bode W., Curr Opin Struct Biol 5(3), 1995
PMID: 7583637

52 References

Daten bereitgestellt von Europe PubMed Central.

Matrix metalloproteinases: a review.
Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA., Crit. Rev. Oral Biol. Med. 4(2), 1993
PMID: 8435466

murphy, am j res cell mol biol 7(), 1992
The role of the C-terminal domain in collagenase and stromelysin specificity.
Murphy G, Allan JA, Willenbrock F, Cockett MI, O'Connell JP, Docherty AJ., J. Biol. Chem. 267(14), 1992
PMID: 1315762
Fragmentation of human polymorphonuclear-leucocyte collagenase.
Knauper V, Osthues A, DeClerck YA, Langley KE, Blaser J, Tschesche H., Biochem. J. 291 ( Pt 3)(), 1993
PMID: 8489511

powers, 1986

beeley, curr opin ther patents 4(), 1994

leslie, 1991

steigemann, 1991

jones, j appl crystallogr 15(), 1978
Sequence specificities of human fibroblast and neutrophil collagenases.
Netzel-Arnett S, Fields GB, Birkedal-Hansen H, Van Wart HE, Fields G., J. Biol. Chem. 266(11), 1991
PMID: 1849891
Vertebrate collagenase inhibitor. II. Tetrapeptidyl hydroxamic acids.
Odake S, Okayama T, Obata M, Morikawa T, Hattori S, Hori H, Nagai Y., Chem. Pharm. Bull. 39(6), 1991
PMID: 1657422
The recombinant catalytic domain of human neutrophil collagenase lacks type I collagen substrate specificity.
Schnierer S, Kleine T, Gote T, Hillemann A, Knauper V, Tschesche H., Biochem. Biophys. Res. Commun. 191(2), 1993
PMID: 8460992
Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study.
Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W., FEBS Lett. 338(2), 1994
PMID: 8307185
MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures
Kraulis, Journal of Applied Crystallography 24(5), 1991
Crystallographic refinement by simulated annealing: application to crambin
Brünger, Acta Crystallographica Section A Foundations of Crystallography 45(1), 1989
Accurate bond and angle parameters for X-ray protein structure refinement
Engh, Acta Crystallographica Section A Foundations of Crystallography 47(4), 1991
Metalloproteinases and their inhibitors in matrix remodeling.
Matrisian LM., Trends Genet. 6(4), 1990
PMID: 2132731
Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases.
Bode W, Gomis-Ruth FX, Huber R, Zwilling R, Stocker W., Nature 358(6382), 1992
PMID: 1319561
Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor.
Borkakoti N, Winkler FK, Williams DH, D'Arcy A, Broadhurst MJ, Brown PA, Johnson WH, Murray EJ., Nat. Struct. Biol. 1(2), 1994
PMID: 7656013
The NMR structure of the inhibited catalytic domain of human stromelysin-1.
Gooley PR, O'Connell JF, Marcy AI, Cuca GC, Salowe SP, Bush BL, Hermes JD, Esser CK, Hagmann WK, Springer JP., Nat. Struct. Biol. 1(2), 1994
PMID: 7656014
Structure of human neutrophil collagenase reveals large S1' specificity pocket.
Stams T, Spurlino JC, Smith DL, Wahl RC, Ho TF, Qoronfleh MW, Banks TM, Rubin B., Nat. Struct. Biol. 1(2), 1994
PMID: 7656015
Structure of thermolysin refined at 1.6 A resolution.
Holmes MA, Matthews BW., J. Mol. Biol. 160(4), 1982
PMID: 7175940
Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity.
Docherty AJ, Lyons A, Smith BJ, Wright EM, Stephens PE, Harris TJ, Murphy G, Reynolds JJ., Nature 318(6041), 1985
PMID: 3903517
Inhibition of human collagenases by sulfur-based substrate analogs.
Schwartz MA, Venkataraman S, Ghaffari MA, Libby A, Mookhtiar KA, Mallya SK, Birkedal-Hansen H, Van Wart HE., Biochem. Biophys. Res. Commun. 176(1), 1991
PMID: 1850255
Structural basis of the action of thermolysin and related zinc peptidases
Matthews, Accounts of Chemical Research 21(9), 1988
Purification of human collagenases with a hydroxamic acid affinity column.
Moore WM, Spilburg CA., Biochemistry 25(18), 1986
PMID: 3021211
Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin).
Netzel-Arnett S, Sang QX, Moore WG, Navre M, Birkedal-Hansen H, Van Wart HE., Biochemistry 32(25), 1993
PMID: 8390857
Phosphoramidate peptide inhibitors of human skin fibroblast collagenase.
Kortylewicz ZP, Galardy RE., J. Med. Chem. 33(1), 1990
PMID: 2153207
Synthesis of novel modified dipeptide inhibitors of human collagenase: beta-mercapto carboxylic acid derivatives.
Beszant B, Bird J, Gaster LM, Harper GP, Hughes I, Karran EH, Markwell RE, Miles-Williams AJ, Smith SA., J. Med. Chem. 36(25), 1993
PMID: 8258825
1.56 A structure of mature truncated human fibroblast collagenase.
Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, Johnson JS, Cook ER, Falvo J, Wahl RC, Pulvino TA., Proteins 19(2), 1994
PMID: 8090713
On the size of the active site in proteases. I. Papain.
Schechter I, Berger A., Biochem. Biophys. Res. Commun. 27(2), 1967
PMID: 6035483
cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases.
Boone TC, Johnson MJ, De Clerck YA, Langley KE., Proc. Natl. Acad. Sci. U.S.A. 87(7), 1990
PMID: 2157214
Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts.
Yang TT, Hawkes SP., Proc. Natl. Acad. Sci. U.S.A. 89(22), 1992
PMID: 1438264
Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor.
Lovejoy B, Cleasby A, Hassell AM, Longley K, Luther MA, Weigl D, McGeehan G, McElroy AB, Drewry D, Lambert MH., Science 263(5145), 1994
PMID: 8278810
The Protein Data Bank: a computer-based archival file for macromolecular structures.
Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M., J. Mol. Biol. 112(3), 1977
PMID: 875032
Collagenase inhibitors: their design and potential therapeutic use.
Johnson WH, Roberts NA, Borkakoti N., J. Enzym. Inhib. 2(1), 1987
PMID: 2854154

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 7737183
PubMed | Europe PMC

Suchen in

Google Scholar