Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain

BECKER A, Niehaus K, Pühler A (1995)
Mol Microbiol 16(2): 191-204.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Erscheinungsjahr
Zeitschriftentitel
Mol Microbiol
Band
16
Zeitschriftennummer
2
Seite
191-204
ISSN
eISSN
PUB-ID

Zitieren

BECKER A, Niehaus K, Pühler A. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol. 1995;16(2):191-204.
BECKER, A., Niehaus, K., & Pühler, A. (1995). Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol, 16(2), 191-204. doi:10.1111/j.1365-2958.1995.tb02292.x
BECKER, A., Niehaus, K., and Pühler, A. (1995). Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol 16, 191-204.
BECKER, A., Niehaus, K., & Pühler, A., 1995. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol, 16(2), p 191-204.
A. BECKER, K. Niehaus, and A. Pühler, “Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain”, Mol Microbiol, vol. 16, 1995, pp. 191-204.
BECKER, A., Niehaus, K., Pühler, A.: Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol. 16, 191-204 (1995).
BECKER, A, Niehaus, Karsten, and Pühler, Alfred. “Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain”. Mol Microbiol 16.2 (1995): 191-204.

56 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021.
Hawkins JP, Geddes BA, Oresnik IJ., Mol Plant Microbe Interact 30(12), 2017
PMID: 28871850
Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants.
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A., Genes (Basel) 8(12), 2017
PMID: 29194398
Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies.
Schmid J, Sieber V, Rehm B., Front Microbiol 6(), 2015
PMID: 26074894
Identification and functional analysis of the gene ste9 involving in Ebosin biosynthesis from Streptomyces sp. 139.
Zhang Y, Li X, Qi X, Jiang R, Guo L, Zhang R, Li Y., FEMS Microbiol Lett 350(2), 2014
PMID: 24206438
Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae-Pisum sativum symbiosis.
Ivashina TV, Fedorova EE, Ashina NP, Kalinchuk NA, Druzhinina TN, Shashkov AS, Shibaev VN, Ksenzenko VN., J Appl Microbiol 109(2), 2010
PMID: 20233262
Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2.
Purins L, Van Den Bosch L, Richardson V, Morona R., Microbiology 154(pt 4), 2008
PMID: 18375803
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC., Nat Rev Microbiol 5(8), 2007
PMID: 17632573
Overexpression and characterization of Wzz of Escherichia coli O86:H2.
Guo H, Lokko K, Zhang Y, Yi W, Wu Z, Wang PG., Protein Expr Purif 48(1), 2006
PMID: 16603378
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases.
Moreira LM, Hoffmann K, Albano H, Becker A, Niehaus K, Sá-Correia I., J Mol Microbiol Biotechnol 8(1), 2004
PMID: 15741740
Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide.
Moreira LM, Videira PA, Sousa SA, Leitão JH, Cunha MV, Sá-Correia I., Biochem Biophys Res Commun 312(2), 2003
PMID: 14637140
Rhizobium leguminosarum bv. trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization.
Mazur A, Król JE, Wielbo J, Urbanik-Sypniewska T, Skorupska A., Mol Plant Microbe Interact 15(4), 2002
PMID: 12026178
Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core.
Daniels C, Griffiths C, Cowles B, Lam JS., Environ Microbiol 4(12), 2002
PMID: 12534470
Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria.
Boels IC, Kranenburg Rvan, Hugenholtz J, Kleerebezem M, Vos WMde., Int Dairy J 11(9), 2001
PMID: IND23269037
Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria.
Vincent C, Duclos B, Grangeasse C, Vaganay E, Riberty M, Cozzone AJ, Doublet P., J Mol Biol 304(3), 2000
PMID: 11090276
Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia.
Yamamoto S, Miyake K, Koike Y, Watanabe M, Machida Y, Ohta M, Iijima S., J Bacteriol 181(17), 1999
PMID: 10464185
Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence.
Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Pühler A, Ielpi L., J Bacteriol 180(7), 1998
PMID: 9537354
The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.
Becker A, Rüberg S, Küster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A., J Bacteriol 179(4), 1997
PMID: 9023225
Characterization of a bacterial gene encoding an autophosphorylating protein tyrosine kinase.
Grangeasse C, Doublet P, Vaganay E, Vincent C, Deléage G, Duclos B, Cozzone AJ., Gene 204(1-2), 1997
PMID: 9434192
Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88.
Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ., J Bacteriol 178(9), 1996
PMID: 8626338
Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function.
González JE, York GM, Walker GC., Gene 179(1), 1996
PMID: 8955640
Bacterial polysaccharide synthesis and gene nomenclature.
Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR, Rick PD., Trends Microbiol 4(12), 1996
PMID: 9004408

58 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Arnold, Endocytobiosis and Cell Res 10(), 1994

Batchelor, J Bacteriol 174(), 1992
Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa.
Battisti L, Lara JC, Leigh JA., Proc. Natl. Acad. Sci. U.S.A. 89(12), 1992
PMID: 1608972

Becker, Mol Plant-Microbe Interact 6(), 1993
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098

Betlach, 1987

Breedveid, J Gen Microbiol 136(), 1990

Bullock, Bio Techniques 5(), 1987

AUTHOR UNKNOWN, 0

Casse, J Bacteriol 113(), 1979

Chaplin, 1986
Analysis of membrane and surface protein sequences with the hydrophobic moment plot.
Eisenberg D, Schwarz E, Komaromy M, Wall R., J. Mol. Biol. 179(1), 1984
PMID: 6502707

Fath, Microbiol Rev 57(), 1993

Glucksmann, J Bacteriol 175(), 1993

Glucksmann, J Bacteriol 175(), 1993

Gutierrez, Nucl Acids Res 17(), 1989

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Koplin, J Bacteriol 175(), 1993
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129

Leigh, J Bacteriol 170(), 1988

Long, J Bacteriol 170(), 1988

Maniatis, 1982

Meade, J Bacteriol 149(), 1982

Meier-Dieter, J Biol Chem 267(), 1992

Miller, 1972

Morrison, J Bacteriol 132(), 1977

AUTHOR UNKNOWN, 0

Muller, Mol Plant-Microbe Interact 6(), 1993

AUTHOR UNKNOWN, 0
Improved tools for biological sequence comparison.
Pearson WR, Lipman DJ., Proc. Natl. Acad. Sci. U.S.A. 85(8), 1988
PMID: 3162770

Priefer, 1984

Reed, J Bacteriol 173(), 1991

Reinhold, J Bacteriol 176(), 1994

Reuber, J Bacteriol 175(), 1993

Reuber, J Bacteriol 173(), 1991

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Lipid-bound sugars in Rhizobium meliloti.
Tolmasky ME, Staneloni RJ, Ugalde RA, Leloir LF., Arch. Biochem. Biophys. 203(1), 1980
PMID: 6447479

AUTHOR UNKNOWN, 0

Zimmermann, Nucl Acids Res 18(), 1990

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 7565082
PubMed | Europe PMC

Suchen in

Google Scholar