The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases

Schneider K, Müller A, Krahn E, Hagen WR, Wassink H, Knuttel KH (1995)
EUROPEAN JOURNAL OF BIOCHEMISTRY 230(2): 666-675.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
In the presence of molybdate (1 mu M) 2-3.5% oxygen and with sucrose as carbon source, Xanthobacter autotrophicus GZ29, a microaerophilic nitrogen-fixing hydrogen-oxidizing bacterium, grew diazotrophically with a minimal doubling time of 2.5 h and a calculated absorbance of up to 52 (546 nm). The maximal specific activity obtained was 145 nmol ethylene reduced . min(-1) . mg protein(-1) (crude extract). The Mo nitrogenase was derepressed to a comparable level with methionine as nitrogen source. Vanadium compounds stimulated neither growth nor nitrogenase activity. Without added molybdate, diazotrophic growth and nitrogenase activity decreased to an extremely low level, The nitrogenase, responsible for the residual activity in molybdate-starved cells, contained molybdate but no other heterometal atom. These results indicate that, in X. autotrophicus, a Mo-independent nitrogenase does not exist. However, the molybdate-containing nitrogenase exhibited some properties which are reminiscent of alternative nitrogenases. The MoFe protein (component 1, Xa1) copurified with two molecules of a small, not previously detected polypeptide (molar mass 13.6 kDa) and was able to reduce acetylene not only to ethylene but also partly ro ethane. Under certain conditions, i.e. in Tris/HCl buffer at alkaline pH values, with titanium (III) citrate as electron donor, at high component 1/component 2 ratios, and at low, non-saturating acetylene concentrations, up to 5.5% ethane was measured. Parallel to the pH-dependent increase of the relative yield of ethane, the total activity (both acetylene and nitrogen reduction rates) decreased and the S = 3/2 FeMo cofactor ESR signal was split into three signals with different rhombicities [E/D values of 0.036 (signal I), 0.072 (signal II) and 0.11 (signal III)]. The intensities of the two new FeMo cofactor signals were more pronounced the more alkaline the pH. They could be further enhanced using titanium (III) citrate instead of Na2S2O4 as reductant.
Publishing Year
ISSN
PUB-ID

Cite this

Schneider K, Müller A, Krahn E, Hagen WR, Wassink H, Knuttel KH. The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY. 1995;230(2):666-675.
Schneider, K., Müller, A., Krahn, E., Hagen, W. R., Wassink, H., & Knuttel, K. H. (1995). The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY, 230(2), 666-675.
Schneider, K., Müller, A., Krahn, E., Hagen, W. R., Wassink, H., and Knuttel, K. H. (1995). The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY 230, 666-675.
Schneider, K., et al., 1995. The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY, 230(2), p 666-675.
K. Schneider, et al., “The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases”, EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 230, 1995, pp. 666-675.
Schneider, K., Müller, A., Krahn, E., Hagen, W.R., Wassink, H., Knuttel, K.H.: The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY. 230, 666-675 (1995).
Schneider, Klaus, Müller, Achim, Krahn, E, Hagen, W. R., Wassink, H., and Knuttel, K. H. “The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases”. EUROPEAN JOURNAL OF BIOCHEMISTRY 230.2 (1995): 666-675.
This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH.
Yang KY, Haynes CA, Spatzal T, Rees DC, Howard JB., Biochemistry 53(2), 2014
PMID: 24392967
Nitrogenase reduction of carbon-containing compounds.
Seefeldt LC, Yang ZY, Duval S, Dean DR., Biochim. Biophys. Acta 1827(8-9), 2013
PMID: 23597875
Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes.
Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R., BMC Genomics 13(), 2012
PMID: 22554235
FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus.
Siemann S, Schneider K, Behrens K, Knochel A, Klipp W, Muller A., Eur. J. Biochem. 268(7), 2001
PMID: 11277916
Vanadium nitrogenase.
Rehder D., J. Inorg. Biochem. 80(1-2), 2000
PMID: 10885473
Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus.
Schneider K, Gollan U, Drottboom M, Selsemeier-Voigt S, Muller A., Eur. J. Biochem. 244(3), 1997
PMID: 9108249

47 References

Data provided by Europe PubMed Central.

Rapid purification of the protein components of a highly active "iron only" nitrogenase.
Schneider K, Gollan U, Selsemeier-Voigt S, Plass W, Muller A., Naturwissenschaften 81(9), 1994
PMID: 7969501
A novel S = 3/2 EPR signal associated with native Fe-proteins of nitrogenase.
Hagen WR, Eady RR, Dunham WR, Haaker H., FEBS Lett. 189(2), 1985
PMID: 2995120
Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo
Dilworth, Nature 327(6118), 1987
Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis.
Scott DJ, May HD, Newton WE, Brigle KE, Dean DR., Nature 343(6254), 1990
PMID: 2153269
Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii
Kirn, Nature 360(6404), 1992
Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifUI SVW gene region: possible role of NifW in homocitrate processing.
Masepohl B, Angermuller S, Hennecke S, Hubner P, Moreno-Vivian C, Klipp W., Mol. Gen. Genet. 238(3), 1993
PMID: 8492805
Vanadium-Akkumulation beim Stickstoff-fixierenden Wasserstoffbacterium Xanthobacter autotrophicus
Müller, Naturwissenschaften 75(12), 1988
Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29.
Berndt H, Ostwal KP, Lalucat J, Schumann C, Mayer F, Schlegel HG., Arch. Microbiol. 108(1), 1976
PMID: 1275646
Non heme (iron-sulfur) proteins of Azotobacter vinelandii.
Shethna YI, DerVartanian DV, Beinert H., Biochem. Biophys. Res. Commun. 31(6), 1968
PMID: 5668181
Selective removal of molybdenum traces from growth media of N2-fixing bacteria.
Schneider K, Muller A, Johannes KU, Diemann E, Kottmann J., Anal. Biochem. 193(2), 1991
PMID: 1908197
On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii.
Scherings G, Haaker H, Wassink H, Veeger C., Eur. J. Biochem. 135(3), 1983
PMID: 6578037
The iron-molybdenum cofactor of nitrogenase
Burgess, Chemical Reviews 90(8), 1990
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii.
Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA., Biochemistry 25(23), 1986
PMID: 3026449
The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures.
Chan MK, Kim J, Rees DC., Science 260(5109), 1993
PMID: 8484118

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 7607241
PubMed | Europe PMC

Search this title in

Google Scholar