Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation

Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T (1996)
BIOPHYSICAL JOURNAL 71(2): 868-877.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Detailed kinetic data suggest that the direct transfer of plasmid DNA (YEp 351, 5.6 kbp, supercoiled, M(r) approximate to 3.5 x 10(6)) by membrane electroporation of yeast cells (Saccharomyces cerevisiae, strain AH 215) is mainly due to electrodiffusive processes. The rate-limiting step for the cell transformation, however, is a bimolecular DNA-binding interaction in the cell interior. Both the adsorption of DNA, directly measured with [P-32]dCTP DNA, and the number of transformants are collinearly enhanced with increasing total concentrations [D-t] and [Ca-t] of DNA and of calcium, respectively. At [Ca-t] = 1 mM, the half-saturation or equilibrium constant is <(K)over bar (D)> = 15 +/- 1 nM al 293 K (20 degrees C). The optimal transformation frequency is TFopt = 4.1 +/- 0.4 x 10(-5) if a single exponential pulse of initial field strength E(0) = 4 kV cm(-1) and decay time constant tau(E) = 45 ms is applied al [D-t] = 2.7 nM and 10(8) cells in 0.1 mi. The dependence of TF on [Ca-t] yields the equilibrium constants K-Ca(0) = 1.8 +/- 0.2 mM (in the absence of DNA) and K-Ca' (at 2.7 nM DNA), comparable with and derived from electrophoresis data. In yeast cells, too, the appearance of a DNA molecule in its whole length in the cell interior is clearly an after-field event. At E(0) = 4.0 kV cm(-1) and T = 293 K, the flow coefficient of DNA through the porous membrane patches is k(f)(0) = 7.0 +/- 0.7 x 10(3) s(-1) and the electrodiffusion of DNA is approximately 10 times more effective than simple diffusion: D/D-o approximate to 10.3. The mean radius of these pores is r(p) = 0.39 +/- 0.05 nm, and the mean number of pores per cell (of size empty set approximate to 5.5 mu m) is N-p = 2.2 +/- 0.2 x 10(4). The maximal membrane area that is involved in the electrodiffusive penetration of adsorbed DNA into the outer surface of the electroporated cell membrane patches is only 0.023% of the total cell surface. The surface penetration is followed either by additional electrodiffusive or by passive (after-field) diffusive translocation of the inserted DNA into the cell interior. For practical purposes of optimal transformation efficiency, 1 mM calcium is necessary for sufficient DNA binding and the relatively long pulse duration of 20-40 ms is required to achieve efficient electrodiffusive transport across the cell wall and into the outer surface of electroporated cell membrane patches.
Publishing Year
ISSN
PUB-ID

Cite this

Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL. 1996;71(2):868-877.
Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., & Tomov, T. (1996). Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL, 71(2), 868-877. doi:10.1016/S0006-3495(96)79288-3
Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., and Tomov, T. (1996). Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL 71, 868-877.
Neumann, E., et al., 1996. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL, 71(2), p 868-877.
E. Neumann, et al., “Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation”, BIOPHYSICAL JOURNAL, vol. 71, 1996, pp. 868-877.
Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., Tomov, T.: Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL. 71, 868-877 (1996).
Neumann, Eberhard, Kakorin, Sergej, Tsoneva, I, Nikolova, B, and Tomov, T. “Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation”. BIOPHYSICAL JOURNAL 71.2 (1996): 868-877.
This data publication is cited in the following publications:
This publication cites the following data publications:

55 Citations in Europe PMC

Data provided by Europe PubMed Central.

Mechanism of electroporative dye uptake by mouse B cells.
Neumann E, Toensing K, Kakorin S, Budde P, Frey J., Biophys J 74(1), 1998
PMID: 9449314
Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells.
Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP., Biophys J 74(6), 1998
PMID: 9635756
One stop mycology.
Frazer LN., Mycol Res 101(4), 1997
PMID: IND20620459
Sphingosine-mediated electroporative DNA transfer through lipid bilayers.
Hristova NI, Tsoneva I, Neumann E., FEBS Lett 415(1), 1997
PMID: 9326374

21 References

Data provided by Europe PubMed Central.

Membrane electroporation--fast molecular exchange by electroosmosis.
Dimitrov DS, Sowers AE., Biochim. Biophys. Acta 1022(3), 1990
PMID: 1690573
Expression of the Thy-1 glycoprotein gene by DNA-mediated gene transfer.
Evans GA, Ingraham HA, Lewis K, Cunningham K, Seki T, Moriuchi T, Chang HC, Silver J, Hyman R., Proc. Natl. Acad. Sci. U.S.A. 81(17), 1984
PMID: 6147849
Fast kinetics studies of Escherichia coli electrotransformation.
Eynard N, Sixou S, Duran N, Teissie J., Eur. J. Biochem. 209(1), 1992
PMID: 1396716
Tissue specificity of the initiation of immunoglobulin kappa gene transcription.
Falkner FG, Neumann E, Zachau HG., Hoppe-Seyler's Z. Physiol. Chem. 365(11), 1984
PMID: 6096254
Effect of n-alcohols on the electrotransformation and permeability of Saccharomyces cerevisiae.
Ganeva VJ, Tsoneva IC., Appl. Microbiol. Biotechnol. 38(6), 1993
PMID: 7763536
Reversible electrical breakdown of lipid bilayers: formation and evolution of pores.
Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI., Biochim. Biophys. Acta 940(2), 1988
PMID: 2453213
Yeast/E. coli shuttle vectors with multiple unique restriction sites.
Hill JE, Myers AM, Koerner TJ, Tzagoloff A., Yeast 2(3), 1986
PMID: 3333305
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis.
Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzhev YuA ., Biophys. J. 60(4), 1991
PMID: 1660315
High efficiency transformation of intact yeast cells by electric field pulses.
Meilhoc E, Masson JM, Teissie J., Biotechnology (N.Y.) 8(3), 1990
PMID: 1366502
Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708
Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers.
Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E., Biophys. Chem. 52(3), 1994
PMID: 7999976
Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores.
Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YuA ., Biophys. J. 63(5), 1992
PMID: 1282374
Electric field mediated gene transfer.
Wong TK, Neumann E., Biochem. Biophys. Res. Commun. 107(2), 1982
PMID: 7126230

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 8842225
PubMed | Europe PMC

Search this title in

Google Scholar