Bound states for Schrodinger Hamiltonians: Phase space methods and applications

Blanchard P, Stubbe J (1996)
REVIEWS IN MATHEMATICAL PHYSICS 8(04): 503-547.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
Properties of bound states for Schrodinger operators are reviewed. These include: bounds on the number of bound states and on the moments of the energy levels, existence and nonexistence of bound states, phase space bounds and semi-classical results, the special case of central potentials, and applications of these bounds in quantum mechanics of many particle systems and dynamical systems. For the phase space bounds relevant to these applications we improve the explicit constants.
Erscheinungsjahr
Zeitschriftentitel
REVIEWS IN MATHEMATICAL PHYSICS
Band
8
Zeitschriftennummer
04
Seite
503-547
ISSN
eISSN
PUB-ID

Zitieren

Blanchard P, Stubbe J. Bound states for Schrodinger Hamiltonians: Phase space methods and applications. REVIEWS IN MATHEMATICAL PHYSICS. 1996;8(04):503-547.
Blanchard, P., & Stubbe, J. (1996). Bound states for Schrodinger Hamiltonians: Phase space methods and applications. REVIEWS IN MATHEMATICAL PHYSICS, 8(04), 503-547. doi:10.1142/S0129055X96000172
Blanchard, P., and Stubbe, J. (1996). Bound states for Schrodinger Hamiltonians: Phase space methods and applications. REVIEWS IN MATHEMATICAL PHYSICS 8, 503-547.
Blanchard, P., & Stubbe, J., 1996. Bound states for Schrodinger Hamiltonians: Phase space methods and applications. REVIEWS IN MATHEMATICAL PHYSICS, 8(04), p 503-547.
P. Blanchard and J. Stubbe, “Bound states for Schrodinger Hamiltonians: Phase space methods and applications”, REVIEWS IN MATHEMATICAL PHYSICS, vol. 8, 1996, pp. 503-547.
Blanchard, P., Stubbe, J.: Bound states for Schrodinger Hamiltonians: Phase space methods and applications. REVIEWS IN MATHEMATICAL PHYSICS. 8, 503-547 (1996).
Blanchard, Philippe, and Stubbe, J. “Bound states for Schrodinger Hamiltonians: Phase space methods and applications”. REVIEWS IN MATHEMATICAL PHYSICS 8.04 (1996): 503-547.