Wick calculus in Gaussian analysis

Kondratiev Y, Leukert P, Streit L (1996)
ACTA APPLICANDAE MATHEMATICAE 44(3): 269-294.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
We define an extension of the distribution spaces conventionally used in Gaussian analysis. This space, characterized by analytic properties of S-transforms, allows for a calculus based on the Wick product. We indicate some of its Features.
Publishing Year
ISSN
PUB-ID

Cite this

Kondratiev Y, Leukert P, Streit L. Wick calculus in Gaussian analysis. ACTA APPLICANDAE MATHEMATICAE. 1996;44(3):269-294.
Kondratiev, Y., Leukert, P., & Streit, L. (1996). Wick calculus in Gaussian analysis. ACTA APPLICANDAE MATHEMATICAE, 44(3), 269-294.
Kondratiev, Y., Leukert, P., and Streit, L. (1996). Wick calculus in Gaussian analysis. ACTA APPLICANDAE MATHEMATICAE 44, 269-294.
Kondratiev, Y., Leukert, P., & Streit, L., 1996. Wick calculus in Gaussian analysis. ACTA APPLICANDAE MATHEMATICAE, 44(3), p 269-294.
Y. Kondratiev, P. Leukert, and L. Streit, “Wick calculus in Gaussian analysis”, ACTA APPLICANDAE MATHEMATICAE, vol. 44, 1996, pp. 269-294.
Kondratiev, Y., Leukert, P., Streit, L.: Wick calculus in Gaussian analysis. ACTA APPLICANDAE MATHEMATICAE. 44, 269-294 (1996).
Kondratiev, Yuri, Leukert, P, and Streit, Ludwig. “Wick calculus in Gaussian analysis”. ACTA APPLICANDAE MATHEMATICAE 44.3 (1996): 269-294.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar