GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)

Mpodozis J, Cox K, Shimizu T, Bischof H-J, Woodson W, Karten HJ (1996)
JOURNAL OF COMPARATIVE NEUROLOGY 374(2): 204-222.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
The avian nucleus rotundus, a nucleus that appears to be homologous to the inferior/caudal pulvinar of mammals, is the major target of an ascending retino-tecto-thalamic pathway. Further clarification of the inputs to the rotundus and their functional properties will contribute to our understanding of the fundamental role of the ascending tectal inputs to the telencephalon in all vertebrates, including mammals. We found that the rotundus contains a massive plexus of glutamic acid decarboxylase (GAD)-immunoreactive axons using antibodies against GAD. The cells within the rotundus, however, were not immunoreactive for GAD. The retrograde tracer cholera toxin B fragment was injected into the rotundus to establish the location of the afferent neurons and determine the source of the gamma aminobutyric acid (GABA) inputs into the rotundus. In addition to the recognized bilateral inputs from layer 13 of the tectum, we found intense retrograde labeling of neurons within the ipsilateral nuclei subpretectalis (SP), subpretectalis-caudalis (SPcd), interstitio-pretecto-subpretectalis (IFS), posteroventralis thalami (PV), and reticularis superior thalami (RS). All the neurons of the SP, SPcd, IFS, and PV were intensely GAD-immunoreactive. The neurons of layer 13 of the tectum were not immunoreactive for GAD. Following the destruction of the ipsilateral SP/IPS complex, we found a major reduction in the intensity of the GAD axonal immunoreactivity within the ipsilateral rotundus, but this destruction did not diminish the intensity of the GAD-immunoreactivity within the contralateral rotundus. Our studies indicated that the source of the massive GAD-immunoreactive plexus within the rotundus was from the ipsilateral SP, SPcd, IFS, and PV nuclei. These nuclei, in turn, received ipsilateral tectal input via collaterals of the neurons of layer 13 in the course of their projections upon the rotundus. We suggest that the direct bilateral tecto-rotundal projections are excitatory, whereas the indirect ipsilateral projections from the SP/IPS and PV are mainly inhibitory, possibly acting via a GABA-A receptor. (C) 1996 Wiley-Liss, Inc.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Mpodozis J, Cox K, Shimizu T, Bischof H-J, Woodson W, Karten HJ. GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY. 1996;374(2):204-222.
Mpodozis, J., Cox, K., Shimizu, T., Bischof, H. - J., Woodson, W., & Karten, H. J. (1996). GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY, 374(2), 204-222.
Mpodozis, J., Cox, K., Shimizu, T., Bischof, H. - J., Woodson, W., and Karten, H. J. (1996). GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY 374, 204-222.
Mpodozis, J., et al., 1996. GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY, 374(2), p 204-222.
J. Mpodozis, et al., “GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)”, JOURNAL OF COMPARATIVE NEUROLOGY, vol. 374, 1996, pp. 204-222.
Mpodozis, J., Cox, K., Shimizu, T., Bischof, H.-J., Woodson, W., Karten, H.J.: GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY. 374, 204-222 (1996).
Mpodozis, J, Cox, K, Shimizu, T, Bischof, Hans-Joachim, Woodson, W, and Karten, HJ. “GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)”. JOURNAL OF COMPARATIVE NEUROLOGY 374.2 (1996): 204-222.
This data publication is cited in the following publications:
This publication cites the following data publications:

45 Citations in Europe PMC

Data provided by Europe PubMed Central.

Processing of motion stimuli by cells in the optic tectum of chickens.
Verhaal J, Luksch H., Neuroreport 26(10), 2015
PMID: 26053699
Anatomical organization of the visual dorsal ventricular ridge in the chick (Gallus gallus): Layers and columns in the avian pallium.
Ahumada-Galleguillos P, Fernandez M, Marin GJ, Letelier JC, Mpodozis J., J. Comp. Neurol. 523(17), 2015
PMID: 25982840
Roots of a social brain: developmental models of emerging animacy-detection mechanisms.
Rosa Salva O, Mayer U, Vallortigara G., Neurosci Biobehav Rev 50(), 2015
PMID: 25544151
Mosaic and concerted evolution in the visual system of birds.
Gutierrez-Ibanez C, Iwaniuk AN, Moore BA, Fernandez-Juricic E, Corfield JR, Krilow JM, Kolominsky J, Wylie DR., PLoS ONE 9(3), 2014
PMID: 24621573
Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.
Acerbo MJ, Lazareva OF, McInnerney J, Leiker E, Wasserman EA, Poremba A., Vision Res. 70(), 2012
PMID: 22917681
Bilateral and ipsilateral ascending tectopulvinar pathways in mammals: a study in the squirrel (Spermophilus beecheyi).
Fredes F, Vega-Zuniga T, Karten H, Mpodozis J., J. Comp. Neurol. 520(8), 2012
PMID: 22120503
Topographic arrangement of the rotundo-entopallial projection in the pigeon (Columba livia).
Fredes F, Tapia S, Letelier JC, Marin G, Mpodozis J., J. Comp. Neurol. 518(21), 2010
PMID: 20853511
Motion processing with wide-field neurons in the retino-tecto-rotundal pathway.
Dellen B, Wessel R, Clark JW, Worgotter F., J Comput Neurosci 28(1), 2010
PMID: 19795201
Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): a hodological and GABA-immunocytochemical study.
Miceli D, Reperant J, Ward R, Rio JP, Jay B, Medina M, Kenigfest NB., J. Comp. Neurol. 507(3), 2008
PMID: 18189307
Tectorotundal connections in turtles: an electron microscopic tracing and GABA-immunocytochemical study.
Kenigfest NB, Rio JP, Belekhova MG, Reperant J, Ward R, Jay B, Vesselkin NP., Brain Res. 1186(), 2007
PMID: 17996857
The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus.
Kenigfest N, Belekhova M, Reperant J, Rio JP, Ward R, Vesselkin N., J. Chem. Neuroanat. 30(2-3), 2005
PMID: 16140498
Quantitative features of the nucleus rotundus in the brain of pre- and post-hatch chicks.
Con N, Canbilen A, Bradley PM, Kaplan S., Brain Res. Dev. Brain Res. 146(1-2), 2003
PMID: 14643013
A simple method to microinject solid neural tracers into deep structures of the brain.
Marin G, Henny P, Letelier JC, Sentis E, Karten H, Mrosko B, Mpodozis J., J. Neurosci. Methods 106(2), 2001
PMID: 11325431

37 References

Data provided by Europe PubMed Central.


Revzin, 1979

Revzin, Brain Res. 3(), 1967

Shimizu, 1991

Shimizu, 1993

Shimizu, Soc. Neurosci. Abstr 14(), 1988
Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.
Swanson LW, Lindstrom J, Tzartos S, Schmued LC, O'Leary DD, Cowan WM., Proc. Natl. Acad. Sci. U.S.A. 80(14), 1983
PMID: 6192437

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 8906494
PubMed | Europe PMC

Search this title in

Google Scholar