The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products

Becker A, Rüberg S, Küster H, Roxlau A, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A (1997)
J Bacteriol 179(4): 1375-1384.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Proteins directing the biosynthesis of galactoglucan (exopolysaccharide II) in Rhizobium meliloti Rm2011 are encoded by the exp genes, Sequence analysis of a 32-kb DNA fragment of megaplasmid 2 containing the exp gene cluster identified previously (J. Glazebrook and G. C. Walker, Cell 56:661-672, 1989) revealed the presence of 25 open reading frames, Homologies of the deduced exp gene products to proteins of known function suggested that the exp genes encoded four proteins involved in the biosynthesis of dTDP-glucose and dTDP-rhamnose, six glycosyltransferases, an ABC transporter complex homologous to the subfamily of peptide and protein export complexes, and a protein homologous to Rhizobium NodO proteins. In addition, homologies of three Esp proteins to transcriptional regulators, methyltransferases, and periplasmic binding proteins were found, The positions of 26 Tn5 insertions in the exp gene cluster mere determined, thus allowing the previously described genetic map to be correlated with the sequence. Operon analysis revealed that the exp gene cluster consists of five complementation groups. In comparison to the wild-type background, all exp complementation groups were transcribed at a substantially elevated level in the regulatory mucR mutant.
Erscheinungsjahr
Zeitschriftentitel
J Bacteriol
Band
179
Zeitschriftennummer
4
Seite
1375-1384
ISSN
PUB-ID

Zitieren

Becker A, Rüberg S, Küster H, et al. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J Bacteriol. 1997;179(4):1375-1384.
Becker, A., Rüberg, S., Küster, H., Roxlau, A., Keller, M., Ivashina, T., Cheng, H. P., et al. (1997). The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J Bacteriol, 179(4), 1375-1384.
Becker, A., Rüberg, S., Küster, H., Roxlau, A., Keller, M., Ivashina, T., Cheng, H. P., Walker, G. C., and Pühler, A. (1997). The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J Bacteriol 179, 1375-1384.
Becker, A., et al., 1997. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J Bacteriol, 179(4), p 1375-1384.
A. Becker, et al., “The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products”, J Bacteriol, vol. 179, 1997, pp. 1375-1384.
Becker, A., Rüberg, S., Küster, H., Roxlau, A., Keller, M., Ivashina, T., Cheng, H.P., Walker, G.C., Pühler, A.: The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products. J Bacteriol. 179, 1375-1384 (1997).
Becker, Anke, Rüberg, Silvia, Küster, Helge, Roxlau, A., Keller, M., Ivashina, T., Cheng, H. P., Walker, G. C., and Pühler, Alfred. “The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products”. J Bacteriol 179.4 (1997): 1375-1384.

66 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A cheZ-Like Gene in Azorhizobium caulinodans Is a Key Gene in the Control of Chemotaxis and Colonization of the Host Plant.
Liu X, Liu W, Sun Y, Xia C, Elmerich C, Xie Z., Appl Environ Microbiol 84(3), 2018
PMID: 29150498
AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production.
Schäper S, Steinchen W, Krol E, Altegoer F, Skotnicka D, Søgaard-Andersen L, Bange G, Becker A., Proc Natl Acad Sci U S A 114(24), 2017
PMID: 28559336
Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021.
Hawkins JP, Geddes BA, Oresnik IJ., Mol Plant Microbe Interact 30(12), 2017
PMID: 28871850
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, Søgaard-Andersen L, Becker A., J Bacteriol 198(3), 2016
PMID: 26574513
Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level.
Schlüter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A., J Biotechnol 198(), 2015
PMID: 25661839
Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies.
Schmid J, Sieber V, Rehm B., Front Microbiol 6(), 2015
PMID: 26074894
The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart.
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C., FEBS J 282(23), 2015
PMID: 26365095
Cell cycle constraints on capsulation and bacteriophage susceptibility.
Ardissone S, Fumeaux C, Bergé M, Beaussart A, Théraulaz L, Radhakrishnan SK, Dufrêne YF, Viollier PH., Elife 3(), 2014
PMID: 25421297
Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308.
Caswell CC, Elhassanny AE, Planchin EE, Roux CM, Weeks-Gorospe JN, Ficht TA, Dunman PM, Roop RM., Infect Immun 81(4), 2013
PMID: 23319565
The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM., PLoS One 8(10), 2013
PMID: 24098345
ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti.
Nogales J, Bernabéu-Roda L, Cuéllar V, Soto MJ., J Bacteriol 194(8), 2012
PMID: 22328673
Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression.
Nakajima A, Aono T, Tsukada S, Siarot L, Ogawa T, Oyaizu H., Appl Environ Microbiol 78(17), 2012
PMID: 22752172
Functional characterization of pfm in protein secretion and lung infection of Pseudomonas aeruginosa.
Bai F, Xu H, Zhang Q, Qi X, Mou R, Bai G, Qiao M., Can J Microbiol 57(10), 2011
PMID: 21950738
Role of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis.
Gurich N, González JE., J Bacteriol 191(13), 2009
PMID: 19395488
Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions.
Tsukada S, Aono T, Akiba N, Lee KB, Liu CT, Toyazaki H, Oyaizu H., Appl Environ Microbiol 75(15), 2009
PMID: 19542345
Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection.
Williams A, Wilkinson A, Krehenbrink M, Russo DM, Zorreguieta A, Downie JA., J Bacteriol 190(13), 2008
PMID: 18441060
Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti.
Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A., Biophys J 92(12), 2007
PMID: 17384071
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis.
Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H., Appl Environ Microbiol 73(20), 2007
PMID: 17720818
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD., J Bacteriol 187(23), 2005
PMID: 16291666
The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases.
Moreira LM, Hoffmann K, Albano H, Becker A, Niehaus K, Sá-Correia I., J Mol Microbiol Biotechnol 8(1), 2004
PMID: 15741740
Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition.
Vanbleu E, Marchal K, Lambrecht M, Mathys J, Vanderleyden J., FEMS Microbiol Lett 232(2), 2004
PMID: 15033235
A bifunctional 3,5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis.
Watt G, Leoff C, Harper AD, Bar-Peled M., Plant Physiol 134(4), 2004
PMID: 15020741
Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.
Barsch A, Patschkowski T, Niehaus K., Funct Integr Genomics 4(4), 2004
PMID: 15372312
Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti.
Marketon MM, Glenn SA, Eberhard A, González JE., J Bacteriol 185(1), 2003
PMID: 12486070
A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC., J Bacteriol 184(18), 2002
PMID: 12193623
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center.
Roumiantseva ML, Andronov EE, Sharypova LA, Dammann-Kalinowski T, Keller M, Young JP, Simarov BV., Appl Environ Microbiol 68(9), 2002
PMID: 12200335
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pühler A., Proc Natl Acad Sci U S A 98(17), 2001
PMID: 11481431
Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds.
Espinosa-Urgel M, Salido A, Ramos JL., J Bacteriol 182(9), 2000
PMID: 10762233
Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
Pellock BJ, Cheng HP, Walker GC., J Bacteriol 182(15), 2000
PMID: 10894742
The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide.
Almirón-Roig E, Mulholland F, Gasson MJ, Griffin AM., Microbiology 146 ( Pt 11)(), 2000
PMID: 11065358
Sequence analysis of the cupin gene family in Synechocystis PCC6803.
Dunwell JM., Microb Comp Genomics 3(2), 1998
PMID: 9697098
Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1.
Lloret J, Wulff BB, Rubio JM, Downie JA, Bonilla I, Rivilla R., Appl Environ Microbiol 64(3), 1998
PMID: 9501442
The rfb genes in Azotobacter vinelandii are arranged in a rfbFGC gene cluster: a significant deviation to the arrangement of the rfb genes in Enterobacteriaceae.
Hausman BS, Williamson JA, Schreiner RP, Pulakat L, Gavini N., Biochem Biophys Res Commun 245(2), 1998
PMID: 9571197
A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF.
Xu Y, Murray BE, Weinstock GM., Infect Immun 66(9), 1998
PMID: 9712783
Identification and mutational analysis of rfbG, the gene encoding CDP-D-glucose-4,6-dehydratase, isolated from free living soil bacterium Azotobacter vinelandii.
Gavini N, Hausman BS, Pulakat L, Schreiner RP, Williamson JA., Biochem Biophys Res Commun 240(1), 1997
PMID: 9367902

78 References

Daten bereitgestellt von Europe PubMed Central.

Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti.
Glucksmann MA, Reuber TL, Walker GC., J. Bacteriol. 175(21), 1993
PMID: 8226645
ABC transporters: bacterial exporters.
Fath MJ, Kolter R., Microbiol. Rev. 57(4), 1993
PMID: 8302219
Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021.
Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN., J. Bacteriol. 176(7), 1994
PMID: 8144468
Genetic analysis of Escherichia coli O9 rfb: identification and DNA sequence of phosphomannomutase and GDP-mannose pyrophosphorylase genes.
Sugiyama T, Kido N, Komatsu T, Ohta M, Jann K, Jann B, Saeki A, Kato N., Microbiology (Reading, Engl.) 140 ( Pt 1)(), 1994
PMID: 8162191
Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.
Gonzalez JE, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 93(16), 1996
PMID: 8710923
Culture medium for enterobacteria.
Neidhardt FC, Bloch PL, Smith DF., J. Bacteriol. 119(3), 1974
PMID: 4604283
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
Codon preference and its use in identifying protein coding regions in long DNA sequences.
Staden R, McLachlan AD., Nucleic Acids Res. 10(1), 1982
PMID: 7063399
Analysis of membrane and surface protein sequences with the hydrophobic moment plot.
Eisenberg D, Schwarz E, Komaromy M, Wall R., J. Mol. Biol. 179(1), 1984
PMID: 6502707
Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide.
Felmlee T, Pellett S, Lee EY, Welch RA., J. Bacteriol. 163(1), 1985
PMID: 3891742
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
A new method for predicting signal sequence cleavage sites.
von Heijne G., Nucleic Acids Res. 14(11), 1986
PMID: 3714490
The parD- mutant of Escherichia coli also carries a gyrAam mutation. The complete sequence of gyrA.
Hussain K, Elliott EJ, Salmond GP., Mol. Microbiol. 1(3), 1987
PMID: 2834621
Optimal alignments in linear space.
Myers EW, Miller W., Comput. Appl. Biosci. 4(1), 1988
PMID: 3382986
A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion.
Zhan HJ, Levery SB, Lee CC, Leigh JA., Proc. Natl. Acad. Sci. U.S.A. 86(9), 1989
PMID: 2717610
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028
Haemolysin secretion from E coli.
Holland IB, Kenny B, Blight M., Biochimie 72(2-3), 1990
PMID: 2116181
Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021.
Her GR, Glazebrook J, Walker GC, Reinhold VN., Carbohydr. Res. 198(2), 1990
PMID: 2379191
Characterization and cloning of the gerC locus of Bacillus subtilis 168.
Yazdi MA, Moir A., J. Gen. Microbiol. 136(7), 1990
PMID: 2121900
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Pore-forming cytolysins of gram-negative bacteria.
Welch RA., Mol. Microbiol. 5(3), 1991
PMID: 2046545
Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2).
Jiang XM, Neal B, Santiago F, Lee SJ, Romana LK, Reeves PR., Mol. Microbiol. 5(3), 1991
PMID: 1710759
Nucleotide sequence of the Escherichia coli regulatory gene mprA and construction and characterization of mprA-deficient mutants.
del Castillo I, Gonzalez-Pastor JE, San Millan JL, Moreno F., J. Bacteriol. 173(12), 1991
PMID: 1840583
Lipopolysaccharide O-antigen biosynthesis in Shigella dysenteriae serotype 1: analysis of the plasmid-carried rfp determinant.
Gohmann S, Manning PA, Alpert CA, Walker MJ, Timmis KN., Microb. Pathog. 16(1), 1994
PMID: 7520113
The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes.
Sutton JM, Lea EJ, Downie JA., Proc. Natl. Acad. Sci. U.S.A. 91(21), 1994
PMID: 7524090
Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action.
Saxena IM, Brown RM Jr, Fevre M, Geremia RA, Henrissat B., J. Bacteriol. 177(6), 1995
PMID: 7883697
Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan.
Keller M, Roxlau A, Weng WM, Schmidt M, Quandt J, Niehaus K, Jording D, Arnold W, Puhler A., Mol. Plant Microbe Interact. 8(2), 1995
PMID: 7756693
Homologies between salmolysin and some bacterial regulatory proteins.
Dehoux P, Cossart P., Mol. Microbiol. 15(3), 1995
PMID: 7783629
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.
Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM., Science 269(5223), 1995
PMID: 7542800
Role of Rfe and RfbF in the initiation of biosynthesis of D-galactan I, the lipopolysaccharide O antigen from Klebsiella pneumoniae serotype O1.
Clarke BR, Bronner D, Keenleyside WJ, Severn WB, Richards JC, Whitfield C., J. Bacteriol. 177(19), 1995
PMID: 7559323
Development of the legume root nodule.
Brewin NJ., Annu. Rev. Cell Biol. 7(), 1991
PMID: 1809347
Developmental aspects of the Rhizobium-legume symbiosis.
Franssen HJ, Vijn I, Yang WC, Bisseling T., Plant Mol. Biol. 19(1), 1992
PMID: 1600171
Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa.
Battisti L, Lara JC, Leigh JA., Proc. Natl. Acad. Sci. U.S.A. 89(12), 1992
PMID: 1608972
Horizontal gene transfer of the Escherichia coli pap and prs pili operons as a mechanism for the development of tissue-specific adhesive properties.
Marklund BI, Tennent JM, Garcia E, Hamers A, Baga M, Lindberg F, Gaastra W, Normark S., Mol. Microbiol. 6(16), 1992
PMID: 1357526
Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein.
Muller P, Keller M, Weng WM, Quandt J, Arnold W, Puhler A., Mol. Plant Microbe Interact. 6(1), 1993
PMID: 8439670

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9023225
PubMed | Europe PMC

Suchen in

Google Scholar