Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus

Schneider K, Gollan U, Drottboom M, Selsemeier-Voigt S, Müller A (1997)
EUROPEAN JOURNAL OF BIOCHEMISTRY 244(3): 789-800.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The component proteins of the iron-only nitrogenase were isolated from Rhodobacter capsulatus (Delta nifHDK, Delta modABCD strain) and purified in a one-day procedure that included only one column-chromatography step (DEAE-Sephacel). This procedure yielded component 1 (FeFe protein, Rc1(Fe)), which was more than 95% pure, and an approximately 80% pure component 2 (Fe protein, Rc2(Fe)). The highest specific activities, which were achieved at an Rc2(Fe)/Rc1(Fe) molar ratio of 40:1, were 260 (C2H4 from C2H2), 350 (NH3 formation), and 2400 (H-2 evolution) nmol product formed . min(-1). mg protein(-1). The purified FeFe protein contained 26+/-4 Fe atoms; it did not contain Mo, V, or any other heterometal atom. The most significant catalytic property of the iron-only nitrogenase is its high H-2-producing activity, which is much less inhibited by competitive substrates than the activity of the conventional molybdenum nitrogenase. Under optimal conditions for N-2 reduction, the activity ratios (mol N-2 reduced/mol H-2 produced) obtained were 1:1 (molybdenum nitrogenase) and 1:7.5 (iron nitrogenase). The Rc1(Fe) protein has only a very low affinity for C2H2. The K-m value determined (12.5 kPa), was about ninefold higher than the K-m for Rc1(Mo) (1.4 kPa). The proportion of ethane produced from acetylene (catalyzed by the iron nitrogenase), was strictly pH dependent. It corresponded to 5.5% of the amount of ethylene at pH 6.5 and was almost zero at pH values greater than 8.5. In complementation experiments, component 1 proteins coupled very poorly with the 'wrong' component 2. Rc1(Fe), if complemented with Rc2(Mo), showed only 10-15% of the maximally possible activity. Cross-reaction experiments with isolated polyclonal antibodies revealed that Rc1(Fe) and Rc1(Mo) are immunologically not related. The most active Rc1(Fe) samples appeared to be EPR-silent in the Na2S2O4-reduced state. However, on partial oxidation with K-3[(CN)(6)] or thionine several signals occurred. The most significant signal appears to be the one at g = 2.27 and 2.06 which deviates from all signals so far described for P clusters. It is a transient signal that appears and disappears reversibly in a redox potential region between -100 mV and +150 mV. Another novel EPR signal (g = 1.96, 1.92, 1.77) occurred on further reduction of Rc1(Fe) by using turnover conditions in the presence of a substrate (N-2, C2H2, H+).
Erscheinungsjahr
Zeitschriftentitel
EUROPEAN JOURNAL OF BIOCHEMISTRY
Band
244
Zeitschriftennummer
3
Seite
789-800
ISSN
eISSN
PUB-ID

Zitieren

Schneider K, Gollan U, Drottboom M, Selsemeier-Voigt S, Müller A. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY. 1997;244(3):789-800.
Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., & Müller, A. (1997). Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY, 244(3), 789-800. doi:10.1111/j.1432-1033.1997.t01-1-00789.x
Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., and Müller, A. (1997). Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 244, 789-800.
Schneider, K., et al., 1997. Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY, 244(3), p 789-800.
K. Schneider, et al., “Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus”, EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 244, 1997, pp. 789-800.
Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., Müller, A.: Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY. 244, 789-800 (1997).
Schneider, Klaus, Gollan, U, Drottboom, M, Selsemeier-Voigt, Sabine, and Müller, Achim. “Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus”. EUROPEAN JOURNAL OF BIOCHEMISTRY 244.3 (1997): 789-800.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mechanism of N2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H2.
Harris DF, Lukoyanov DA, Shaw S, Compton P, Tokmina-Lukaszewska M, Bothner B, Kelleher N, Dean DR, Hoffman BM, Seefeldt LC., Biochemistry 57(5), 2018
PMID: 29283553
Exploring the alternatives of biological nitrogen fixation.
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW., Metallomics 10(4), 2018
PMID: 29629463
Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.
Yang J, Xie X, Yang M, Dixon R, Wang YP., Proc Natl Acad Sci U S A 114(12), 2017
PMID: 28193863
Element strategy of oxygen evolution electrocatalysis based on in situ spectroelectrochemistry.
Ooka H, Takashima T, Yamaguchi A, Hayashi T, Nakamura R., Chem Commun (Camb) 53(53), 2017
PMID: 28466887
Proteome Profiling of the Rhodobacter capsulatus Molybdenum Response Reveals a Role of IscN in Nitrogen Fixation by Fe-Nitrogenase.
Hoffmann MC, Wagner E, Langklotz S, Pfänder Y, Hött S, Bandow JE, Masepohl B., J Bacteriol 198(4), 2016
PMID: 26644433
Protons and pleomorphs: aerobic hydrogen production in Azotobacters.
Noar JD, Bruno-Bárcena JM., World J Microbiol Biotechnol 32(2), 2016
PMID: 26748806
Protons and pleomorphs: aerobic hydrogen production in Azotobacters
Noar JD, Bruno-Bárcena JM., World J Microbiol Biotechnol 32(2), 2016
PMID: IND604781368
Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6.
Noar J, Loveless T, Navarro-Herrero JL, Olson JW, Bruno-Bárcena JM., Appl Environ Microbiol 81(13), 2015
PMID: 25911479
Characterization of an Fe≡N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3.
Anderson JS, Cutsail GE, Rittle J, Connor BA, Gunderson WA, Zhang L, Hoffman BM, Peters JC., J Am Chem Soc 137(24), 2015
PMID: 26000443
Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats.
Wong HL, Smith DL, Visscher PT, Burns BP., Sci Rep 5(), 2015
PMID: 26499760
Coordinated expression of fdxD and molybdenum nitrogenase genes promotes nitrogen fixation by Rhodobacter capsulatus in the presence of oxygen.
Hoffmann MC, Müller A, Fehringer M, Pfänder Y, Narberhaus F, Masepohl B., J Bacteriol 196(3), 2014
PMID: 24272776
Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli.
Yang J, Xie X, Wang X, Dixon R, Wang YP., Proc Natl Acad Sci U S A 111(35), 2014
PMID: 25139995
Photobiological production of hydrogen gas as a biofuel.
McKinlay JB, Harwood CS., Curr Opin Biotechnol 21(3), 2010
PMID: 20303737
Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria.
Masukawa H, Zhang X, Yamazaki E, Iwata S, Nakamura K, Mochimaru M, Inoue K, Sakurai H., Mar Biotechnol (NY) 11(3), 2009
PMID: 19005727
Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.
Glass JB, Wolfe-Simon F, Anbar AD., Geobiology 7(2), 2009
PMID: 19320747
In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins.
Curatti L, Hernandez JA, Igarashi RY, Soboh B, Zhao D, Rubio LM., Proc Natl Acad Sci U S A 104(45), 2007
PMID: 17978192
Overlapping and specialized functions of the molybdenum-dependent regulators MopA and MopB in Rhodobacter capsulatus.
Wiethaus J, Wirsing A, Narberhaus F, Masepohl B., J Bacteriol 188(24), 2006
PMID: 17028278
Identification of two new genes involved in diazotrophic growth via the alternative Fe-only nitrogenase in the phototrophic purple bacterium Rhodobacter capsulatus.
Sicking C, Brusch M, Lindackers A, Riedel KU, Schubert B, Isakovic N, Krall C, Klipp W, Drepper T, Schneider K, Masepohl B., J Bacteriol 187(1), 2005
PMID: 15601692
FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus.
Siemann S, Schneider K, Behrens K, Knöchel A, Klipp W, Müller A., Eur J Biochem 268(7), 2001
PMID: 11277916

50 References

Daten bereitgestellt von Europe PubMed Central.


Stiefel, 1993
Nitrogenase metalloclusters: structures, organization, and synthesis.
Dean DR, Bolin JT, Zheng L., J. Bacteriol. 175(21), 1993
PMID: 8226614

Eady, Adv. Inorg. Chem. 36(), 1991
Rapid purification of the protein components of a highly active "iron only" nitrogenase.
Schneider K, Gollan U, Selsemeier-Voigt S, Plass W, Muller A., Naturwissenschaften 81(9), 1994
PMID: 7969501
The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein.
Eady RR, Robson RL, Richardson TH, Miller RW, Hawkins M., Biochem. J. 244(1), 1987
PMID: 2821997
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii.
Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA., Biochemistry 25(23), 1986
PMID: 3026449
Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii.
Chisnell JR, Premakumar R, Bishop PE., J. Bacteriol. 170(1), 1988
PMID: 3121587
Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.
Davis R, Lehman L, Petrovich R, Shah VK, Roberts GP, Ludden PW., J. Bacteriol. 178(5), 1996
PMID: 8631723
Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii.
Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC., Science 257(5077), 1992
PMID: 1529353
Structural genes for the vanadium nitrogenase from Azotobacter chroococcum.
Robson RL, Woodley PR, Pau RN, Eady RR., EMBO J. 8(4), 1989
PMID: 2743980

AUTHOR UNKNOWN, 0
The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures.
Chan MK, Kim J, Rees DC., Science 260(5109), 1993
PMID: 8484118

Bolin, 1993
Identification of an alternative nitrogenase system in Rhodospirillum rubrum.
Lehman LJ, Roberts GP., J. Bacteriol. 173(18), 1991
PMID: 1909322

AUTHOR UNKNOWN, 0
Cloning and nucleotide sequence of the chlD locus.
Johann S, Hinton SM., J. Bacteriol. 169(5), 1987
PMID: 3553151
Selective removal of molybdenum traces from growth media of N2-fixing bacteria.
Schneider K, Muller A, Johannes KU, Diemann E, Kottmann J., Anal. Biochem. 193(2), 1991
PMID: 1908197
Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins.
Eady RR, Smith BE, Cook KA, Postgate JR., Biochem. J. 128(3), 1972
PMID: 4344006

Schmidt, Arch. Microbiol. 46(), 1963

Beisenherz, Z. Naturforsch. Sect. B Chem. Sci. 8(), 1953
Identification of distinct NAD-linked hydrogenase protein species in mutants and nickel-deficient wild-type cells of Alcaligenes eutrophus H16.
Hornhardt S, Schneider K, Friedrich B, Vogt B, Schlegel HG., Eur. J. Biochem. 189(3), 1990
PMID: 2112462

Ludden, Curr. Top. Cell. Regul. 30(), 1989

AUTHOR UNKNOWN, 0

Tittsworth, J. Am. Chem. Soc. 115(), 1993
Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein.
Pierik AJ, Wassink H, Haaker H, Hagen WR., Eur. J. Biochem. 212(1), 1993
PMID: 8383042

Burgess, 1993

Hallenbeck, Biochim. Biophys. Acta 1057(), 1991

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The molybdenum nitrogenase from wild-type Xanthobacter autotrophicus exhibits properties reminiscent of alternative nitrogenases.
Schneider K, Muller A, Krahn E, Hagen WR, Wassink H, Knuttel KH., Eur. J. Biochem. 230(2), 1995
PMID: 7607241

Lowe, 1985
Mossbauer characterization of the metal clusters in Azotobacter vinelandii nitrogenase VFe protein.
Ravi N, Moore V, Lloyd SG, Hales BJ, Huynh BH., J. Biol. Chem. 269(33), 1994
PMID: 8063708

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9108249
PubMed | Europe PMC

Suchen in

Google Scholar