Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes

Carr R, Weinstock IA, Sivaprasadarao A, Müller A, Aksimentiev A (2008)
NANO LETTERS 8(11): 3916-3921.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels; however, their use as an artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this Letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly, A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte, In the latter conformation, water was observed to flow into and out of the capsule as Na+ cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane.
Erscheinungsjahr
Zeitschriftentitel
NANO LETTERS
Band
8
Ausgabe
11
Seite(n)
3916-3921
ISSN
eISSN
PUB-ID

Zitieren

Carr R, Weinstock IA, Sivaprasadarao A, Müller A, Aksimentiev A. Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes. NANO LETTERS. 2008;8(11):3916-3921.
Carr, R., Weinstock, I. A., Sivaprasadarao, A., Müller, A., & Aksimentiev, A. (2008). Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes. NANO LETTERS, 8(11), 3916-3921. doi:10.1021/nl802366k
Carr, R., Weinstock, I. A., Sivaprasadarao, A., Müller, A., and Aksimentiev, A. (2008). Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes. NANO LETTERS 8, 3916-3921.
Carr, R., et al., 2008. Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes. NANO LETTERS, 8(11), p 3916-3921.
R. Carr, et al., “Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes”, NANO LETTERS, vol. 8, 2008, pp. 3916-3921.
Carr, R., Weinstock, I.A., Sivaprasadarao, A., Müller, A., Aksimentiev, A.: Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes. NANO LETTERS. 8, 3916-3921 (2008).
Carr, Rogan, Weinstock, Ira A., Sivaprasadarao, Asipu, Müller, Achim, and Aksimentiev, Aleksei. “Synthetic Ion Channels via Self-Assembly: A Route for Embedding Porous Polyoxometalate Nanocapsules in Lipid Bilayer Membranes”. NANO LETTERS 8.11 (2008): 3916-3921.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Thermal Responsive Ion Selectivity of Uranyl Peroxide Nanocages: An Inorganic Mimic of K(+) Ion Channels.
Gao Y, Szymanowski JE, Sun X, Burns PC, Liu T., Angew Chem Int Ed Engl 55(24), 2016
PMID: 27105921
Hedgehog-shaped {Mo368} cluster: unique electronic/structural properties, surfactant encapsulation and related self-assembly into vesicles and films.
Garai S, Merca A, Bhowmik S, El Moll H, Li H, Haso F, Nogueira H, Liu T, Wu L, Gouzerh P, Müller A., Soft Matter 11(12), 2015
PMID: 25629447
A unique fluoride nanocontainer: porous molecular capsules can accommodate an unusually high number of "rather labile" fluoride anions.
Garai S, Rubčić M, Bögge H, Haupt ET, Gouzerh P, Müller A., Angew Chem Int Ed Engl 54(20), 2015
PMID: 25809440
Synthesis of poly(sulfobetaine methacrylate)-grafted chitosan under γ-ray irradiation for alamethicin assembly.
Zhou Y, Dong P, Wei Y, Qian J, Hua D., Colloids Surf B Biointerfaces 132(), 2015
PMID: 26037702
An overview of selected current approaches to the characterization of aqueous inorganic clusters.
Jackson MN, Kamunde-Devonish MK, Hammann BA, Wills LA, Fullmer LB, Hayes SE, Cheong PH, Casey WH, Nyman M, Johnson DW., Dalton Trans 44(39), 2015
PMID: 26212049
Artificial Molecular Machines.
Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL., Chem Rev 115(18), 2015
PMID: 26346838
Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells.
Gao Y, Haso F, Szymanowski JE, Zhou J, Hu L, Burns PC, Liu T., Chemistry 21(51), 2015
PMID: 26568062
Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus.
Kim JY, Lee H, Oh KS, Kweon S, Jeon OC, Byun Y, Kim K, Kwon IC, Kim SY, Yuk SH., Biomaterials 34(33), 2013
PMID: 23895999
Structure, properties and reactivity of polyoxometalates: a theoretical perspective.
López X, Carbó JJ, Bo C, Poblet JM., Chem Soc Rev 41(22), 2012
PMID: 22885565
Modeling and simulation of ion channels.
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A., Chem Rev 112(12), 2012
PMID: 23035940
Modeling Pressure-Driven Transport of Proteins through a Nanochannel.
Carr R, Comer J, Ginsberg MD, Aksimentiev A., IEEE Trans Nanotechnol 10(1), 2011
PMID: 22611338
Atoms-to-microns model for small solute transport through sticky nanochannels.
Carr R, Comer J, Ginsberg MD, Aksimentiev A., Lab Chip 11(22), 2011
PMID: 21986816
Self-assembly and structural evolvement of polyoxometalate-anchored dendron complexes.
Yang Y, Wang Y, Li H, Li W, Wu L., Chemistry 16(27), 2010
PMID: 20564290

37 References

Daten bereitgestellt von Europe PubMed Central.


Hille B., 2001

Gouaux E, MacKinnon R., 2005
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R., Science 280(5360), 1998
PMID: 9525859
Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel.
Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC., Science 282(5397), 1998
PMID: 9856938
X-ray structure of a prokaryotic pentameric ligand-gated ion channel.
Hilf RJ, Dutzler R., Nature 452(7185), 2008
PMID: 18322461
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Long SB, Campbell EB, Mackinnon R., Science 309(5736), 2005
PMID: 16002581
Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH.
Jasti J, Furukawa H, Gonzales EB, Gouaux E., Nature 449(7160), 2007
PMID: 17882215
Synthetic ion channels in bilayer membranes.
Fyles TM., Chem Soc Rev 36(2), 2006
PMID: 17264934

Koert U, Al-Momani L, Pfeifer JR., 2004

Matile S, Som A, Sordé N., 2004

Gokel G, Mukhopadhyay A., 2001

Mueller A, Das SK, Talismanov S, Roy S, Beckmann E, Boegge H, Schmidtmann M, Merca A, Berkle A, Allouche L, Zhou Y, Zhang L., 2003

Müller A, Roy S., 2005

Müller A, Roy S., 2005

Müller A, Roy S., 2004

Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Botar B, Talismanova MO., 2003

Merca A, Haupt ETK, Mitra T, Bögge H, Rehder D, Müller A., 2007

Rehder D, Haupt ETK, Bögge H, Müller A., 2006
"Gating" the pores of a metal oxide based capsule: after initial cation uptake subsequent cations are found hydrated and supramolecularly fixed above the pores.
Muller A, Zhou Y, Bogge H, Schmidtmann M, Mitra T, Haupt ET, Berkle A., Angew. Chem. Int. Ed. Engl. 45(3), 2006
PMID: 16342219

Volkmer D, Du A, Kurth D, Schnablegger H, Lehmann P, Koop M, Muller A., 2000

Marrink SJ, de AH, Mark AE., 2004
Coarse grained protein-lipid model with application to lipoprotein particles.
Shih AY, Arkhipov A, Freddolino PL, Schulten K., J Phys Chem B 110(8), 2006
PMID: 16494423
The MARTINI force field: coarse grained model for biomolecular simulations.
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH., J Phys Chem B 111(27), 2007
PMID: 17569554
Understanding nature's design for a nanosyringe.
Lopez CF, Nielsen SO, Moore PB, Klein ML., Proc. Natl. Acad. Sci. U.S.A. 101(13), 2004
PMID: 15070735

Wallace J, Sansom M., 2007

Wong-Ekkabut J, Baoukina S, Triampo W, Tang I, Tieleman D, Monticelli L., 2008
Molecular dynamics simulations of lipid vesicle fusion in atomic detail.
Knecht V, Marrink SJ., Biophys. J. 92(12), 2007
PMID: 17384060
Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion.
Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS., Proc. Natl. Acad. Sci. U.S.A. 103(32), 2006
PMID: 16880392
Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations.
Isralewitz B, Izrailev S, Schulten K., Biophys. J. 73(6), 1997
PMID: 9414212

Müller A, Rehder D, Haupt E, Merca A, Bogge H, Schmidtmann M, Heinze-Bruckner G., 2004

Haupt ETK, Wontarra C, Rehder D, Merca A, Müller A., 2008

Rehder D, Haupt ETK, Müller A., 2008

Haupt ETK, Müller A., 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18844424
PubMed | Europe PMC

Suchen in

Google Scholar