Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies

Wang J, Chaos M, Yang B, Cool TA, Dryer FL, Kasper T, Hansen N, Oßwald P, Kohse-Höinghaus K, Westmoreland PR (2009)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11(9): 1328-1339.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Molecular-beam synchrotron photoionization mass spectrometry and electron-ionization mass spectrometry are used for measurements of species mole fraction profiles for low-pressure premixed dimethyl ether (DME)flames with equivalence ratios ranging from near-stoichiometric conditions (Phi = 0.93) to fuel-rich flames near the limits of flat-flame stability (Phi = 1.86). The results are compared with predictions of a recently modified kinetic model for DME combustion [Zhao et al., Int. J. Chem. Kinet., 2008, 40, 1-18] that has been extensively tested against laminar flame speed measurements, jet-stirred reactor experiments, pyrolysis and oxidation experiments in flow reactors, species measurements for burner-stabilized flames and ignition delay measurements in shock tubes. The present comprehensive measurements of the composition of reaction intermediates over a broad range of equivalence ratios considerably extends the range of the previous experiments used for validation of this model and allows for an accurate determination of contributions of individual reactions to the formation or destruction of any given flame species. The excellent agreement between measurements and predictions found for all major and most intermediate species over the entire range of equivalence ratios provides a uniquely sensitive test of details of the kinetic model. The dependence on equivalence ratio of the characteristic reaction paths in DME flames is examined within the framework of reaction path analyses.
Erscheinungsjahr
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
11
Ausgabe
9
Seite(n)
1328-1339
ISSN
eISSN
PUB-ID

Zitieren

Wang J, Chaos M, Yang B, et al. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2009;11(9):1328-1339.
Wang, J., Chaos, M., Yang, B., Cool, T. A., Dryer, F. L., Kasper, T., Hansen, N., et al. (2009). Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 11(9), 1328-1339. doi:10.1039/b815988b
Wang, J., Chaos, M., Yang, B., Cool, T. A., Dryer, F. L., Kasper, T., Hansen, N., Oßwald, P., Kohse-Höinghaus, K., and Westmoreland, P. R. (2009). Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11, 1328-1339.
Wang, J., et al., 2009. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 11(9), p 1328-1339.
J. Wang, et al., “Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 11, 2009, pp. 1328-1339.
Wang, J., Chaos, M., Yang, B., Cool, T.A., Dryer, F.L., Kasper, T., Hansen, N., Oßwald, P., Kohse-Höinghaus, K., Westmoreland, P.R.: Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 11, 1328-1339 (2009).
Wang, Juan, Chaos, Marcos, Yang, Bin, Cool, Terrill A., Dryer, Fred L., Kasper, Tina, Hansen, Nils, Oßwald, Patrick, Kohse-Höinghaus, Katharina, and Westmoreland, Phillip R. “Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11.9 (2009): 1328-1339.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.
Ruwe L, Moshammer K, Hansen N, Kohse-Höinghaus K., Phys Chem Chem Phys 20(16), 2018
PMID: 29392266
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part III: 2,5-Dimethylfuran.
Togbé C, Tran LS, Liu D, Felsmann D, Oßwald P, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F, Kohse-Höinghaus K., Combust Flame 161(3), 2014
PMID: 24518851
Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame.
Krüger J, Garcia GA, Felsmann D, Moshammer K, Lackner A, Brockhinke A, Nahon L, Kohse-Höinghaus K., Phys Chem Chem Phys 16(41), 2014
PMID: 25237782
Fuel-specific influences on the composition of reaction intermediates in premixed flames of three C5H10O2 ester isomers.
Yang B, Westbrook CK, Cool TA, Hansen N, Kohse-Höinghaus K., Phys Chem Chem Phys 13(15), 2011
PMID: 21409253
Biofuel combustion chemistry: from ethanol to biodiesel.
Kohse-Höinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR., Angew Chem Int Ed Engl 49(21), 2010
PMID: 20446278

33 References

Daten bereitgestellt von Europe PubMed Central.


Graboski, Prog. Energy Combust. Sci. 24(), 1998
Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine.
McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS., Environ. Sci. Technol. 35(9), 2001
PMID: 11355187

Haas, Energy Fuels 15(), 2001

Nash, J. Phys. Chem. A 102(), 1998

Anderson, Isr. J. Chem. 42(), 2002

Anderson, J. Phys. Chem. A 107(), 2003

Daly, Combust. Flame 125(), 2001

Zhao, Combust. Flame 139(), 2004

Qin, Proc. Combust. Inst. 30(), 2005

Chen, Proc. Combust. Inst. 31(), 2007

Pfahl, Proc. Combust. Inst. 26(), 1996

Dagaut, Proc. Combust. Inst. 27(), 1998

Dagaut, Proc. Combust. Inst. 26(), 1996

Curran, Int. J. Chem. Kinet. 30(), 1998

Fischer, Int. J. Chem. Kinet. 32(), 2000

Curran, Int. J. Chem. Kinet. 32(), 2000

Zhao, Int. J. Chem. Kinet. 40(), 2008

McIlroy, Proc. Combust. Inst. 28(), 2000

Kaiser, J. Phys. Chem. A 104(), 2000

Cool, Proc. Combust. Inst. 31(), 2007

Zheng, Proc. Combust. Inst. 30(), 2005

Li, Int. J. Chem. Kinet. 36(), 2004

Cool, Rev. Sci. Instrum. 76(), 2005

Cool, Proc. Combust. Inst. 30(), 2005
Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters.
Osswald P, Struckmeier U, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR., J Phys Chem A 111(19), 2007
PMID: 17388390

Hartlieb, Appl. Phys. B 70(), 2000

Lamprecht, Combust. Flame 122(), 2000

Biordi, Combust. Flame 23(), 1974

Cattolica, Combust. Sci. Technol. 28(), 1982

Li, Int. J. Chem. Kinet. 39(), 2007

Dean, Int. J. Chem. Kinet. 19(), 1987
Isomer-specific influences on the composition of reaction intermediates in dimethyl ether/propene and ethanol/propene flame.
Wang J, Struckmeier U, Yang B, Cool TA, Osswald P, Kohse-Hoinghaus K, Kasper T, Hansen N, Westmoreland PR., J Phys Chem A 112(39), 2008
PMID: 18505242

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19224033
PubMed | Europe PMC

Suchen in

Google Scholar