Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes

Wollschläger K, Gaus K, Körnig A, Eckel R, Wilking S-D, McIntosh M, Majer Z, Becker A, Ros R, Anselmetti D, Sewald N (2009)
SMALL 5(4): 484-495.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ;
Abstract
Interactions between proteins and DNA are essential for the regulation of cellular processes in all living organisms. In this context, it is of special interest to investigate the sequence-specific molecular recognition between transcription factors and their cognate DNA sequences. As a model system, peptide and protein epitopes of the DNA-binding domain (DBD) of the transcription factor PhoB from Escherichia coli are analyzed with respect to DNA binding at the single-molecule level. Peptides representing the amphiphilic recognition helix of the PhoB DBD (amino acids 190-209) are chemically synthesized and C-terminally modified with a linker for atomic force microscopy-dynamic force spectroscopy experiments (AFM-DFS), For comparison, the entire PhoB DBD is overexpressed in E. coli and purified using an intein-mediated protein purification method. To facilitate immobilization for AFM-DFS experiments, an additional cysteine residue is ligated to the protein. Quantitative AFM-DFS analysis proves the specificity of the interaction and yields force-related properties and kinetic data, such as thermal dissociation rate constants. An alanine scan for strategic residues in both peptide and protein sequences is performed to reveal the contributions of single amino acid residues to the molecular-recognition process. Additionally, DNA binding is substantiated by electrophoretic mobility-shift experiments. Structural differences of the peptides, proteins, and DNA upon complex formation are analyzed by circular dichroism spectroscopy. This combination of techniques eventually provides a concise picture of the contribution of epitopes or single amino acids in PhoB to DNA binding.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Wollschläger K, Gaus K, Körnig A, et al. Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes. SMALL. 2009;5(4):484-495.
Wollschläger, K., Gaus, K., Körnig, A., Eckel, R., Wilking, S. - D., McIntosh, M., Majer, Z., et al. (2009). Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes. SMALL, 5(4), 484-495.
Wollschläger, K., Gaus, K., Körnig, A., Eckel, R., Wilking, S. - D., McIntosh, M., Majer, Z., Becker, A., Ros, R., Anselmetti, D., et al. (2009). Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes. SMALL 5, 484-495.
Wollschläger, K., et al., 2009. Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes. SMALL, 5(4), p 484-495.
K. Wollschläger, et al., “Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes”, SMALL, vol. 5, 2009, pp. 484-495.
Wollschläger, K., Gaus, K., Körnig, A., Eckel, R., Wilking, S.-D., McIntosh, M., Majer, Z., Becker, A., Ros, R., Anselmetti, D., Sewald, N.: Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes. SMALL. 5, 484-495 (2009).
Wollschläger, Katrin, Gaus, Katharina, Körnig, Andre, Eckel, Rainer, Wilking, Sven-David, McIntosh, Matthew, Majer, Zsuzsanna, Becker, Anke, Ros, Robert, Anselmetti, Dario, and Sewald, Norbert. “Single-Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes”. SMALL 5.4 (2009): 484-495.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy.
Gensler M, Eidamshaus C, Taszarek M, Reissig HU, Rabe JP., Beilstein J Org Chem 11(), 2015
PMID: 26124883
Catch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
Harder A, Moller AK, Milz F, Neuhaus P, Walhorn V, Dierks T, Anselmetti D., Biophys. J. 108(7), 2015
PMID: 25863062
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate.
Milz F, Harder A, Neuhaus P, Breitkreuz-Korff O, Walhorn V, Lubke T, Anselmetti D, Dierks T., Biochim. Biophys. Acta 1830(11), 2013
PMID: 23891937
Direct force measurement of single DNA-peptide interactions using atomic force microscopy.
Chung JW, Shin D, Kwak JM, Seog J., J. Mol. Recognit. 26(6), 2013
PMID: 23595808
Analysis of DNA interactions using single-molecule force spectroscopy.
Ritzefeld M, Walhorn V, Anselmetti D, Sewald N., Amino Acids 44(6), 2013
PMID: 23468137
Direct measurement of the interaction force between immunostimulatory CpG-DNA and TLR9 fusion protein.
Klein DC, Ovrebo KM, Latz E, Espevik T, Stokke BT., J. Mol. Recognit. 25(2), 2012
PMID: 22290768
The interactions of spore-coat morphogenetic proteins studied by single-molecule recognition force spectroscopy.
Qiao H, Krajcikova D, Liu C, Li Y, Wang H, Barak I, Tang J., Chem Asian J 7(4), 2012
PMID: 22262582
Minor groove recognition is important for the transcription factor PhoB: a surface plasmon resonance study.
Ritzefeld M, Wollschlager K, Niemann G, Anselmetti D, Sewald N., Mol Biosyst 7(11), 2011
PMID: 21912786
Single-molecule force spectroscopy of supramolecular heterodimeric capsules.
Schroder T, Geisler T, Walhorn V, Schnatwinkel B, Anselmetti D, Mattay J., Phys Chem Chem Phys 12(36), 2010
PMID: 20661519

38 References

Data provided by Europe PubMed Central.

Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism.
Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI., Biopolymers 12(1), 1973
PMID: 4687151
Gene regulation by phosphate in enteric bacteria.
Wanner BL., J. Cell. Biochem. 51(1), 1993
PMID: 8432742
Protein-Spleißen: Mechanismus und Anwendungen
Noren, Angewandte Chemie 112(3), 2000
Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid.
Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S., Proc. Natl. Acad. Sci. U.S.A. 86(21), 1989
PMID: 2682640
Tension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force.
Gemmen GJ, Millin R, Smith DE., Proc. Natl. Acad. Sci. U.S.A. 103(31), 2006
PMID: 16868081
Binding strength between cell adhesion proteoglycans measured by atomic force microscopy.
Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt HJ, Misevic GN., Science 267(5201), 1995
PMID: 7855599
Probing DNA-peptide interaction forces at the single-molecule level.
Sewald N, Wilking SD, Eckel R, Albu S, Wollschlager K, Gaus K, Becker A, Bartels FW, Ros R, Anselmetti D., J. Pept. Sci. 12(12), 2006
PMID: 17131299
Specific DNA Recognition by a Synthetic, Monomeric Cys2His2 Zinc-Finger Peptide Conjugated to a Minor-Groove Binder
Vázquez, Angewandte Chemie 119(36), 2007
Dynamic strength of molecular adhesion bonds.
Evans E, Ritchie K., Biophys. J. 72(4), 1997
PMID: 9083660

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19199332
PubMed | Europe PMC

Search this title in

Google Scholar