How to compute the thermal quarkonium spectral function from first principles?

Laine M (2009)
NUCLEAR PHYSICS A 820(1-4): 25c-32c.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
In the limit of a high temperature T and a large quark-mass M, implying a small gauge coupling g, the heavy quark contribution to the spectral function of the electromagnetic current call be computed systematically in the weak-coupling expansion. We argue that the scale hierarchy relevant for addressing the disappearance ("melting") of the resonance peak front the spectral function reads M >> T > g(2)M > gT >> g(4)M, and review flow the heavy scales can be integrated out one-by-one, to construct a set of effective field theories describing the low-energy dynamics. The parametric behaviour of the melting temperature in the weak-coupling limit is specified.
Publishing Year
ISSN
PUB-ID

Cite this

Laine M. How to compute the thermal quarkonium spectral function from first principles? NUCLEAR PHYSICS A. 2009;820(1-4):25c-32c.
Laine, M. (2009). How to compute the thermal quarkonium spectral function from first principles? NUCLEAR PHYSICS A, 820(1-4), 25c-32c.
Laine, M. (2009). How to compute the thermal quarkonium spectral function from first principles? NUCLEAR PHYSICS A 820, 25c-32c.
Laine, M., 2009. How to compute the thermal quarkonium spectral function from first principles? NUCLEAR PHYSICS A, 820(1-4), p 25c-32c.
M. Laine, “How to compute the thermal quarkonium spectral function from first principles?”, NUCLEAR PHYSICS A, vol. 820, 2009, pp. 25c-32c.
Laine, M.: How to compute the thermal quarkonium spectral function from first principles? NUCLEAR PHYSICS A. 820, 25c-32c (2009).
Laine, Mikko. “How to compute the thermal quarkonium spectral function from first principles?”. NUCLEAR PHYSICS A 820.1-4 (2009): 25c-32c.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

arXiv 0810.1112

Inspire 798748

Search this title in

Google Scholar