Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide

Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, et al. (2009)
ENVIRONMENTAL MICROBIOLOGY 11(5): 1038-1055.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Sulfate-reducing bacteria (SRB) belonging to the metabolically versatile Desulfobacteriaceae are abundant in marine sediments and contribute to the global carbon cycle by complete oxidation of organic compounds. Desulfobacterium autotrophicum HRM2 is the first member of this ecophysiologically important group with a now available genome sequence. With 5.6 megabasepairs (Mbp) the genome of Db. autotrophicum HRM2 is about 2 Mbp larger than the sequenced genomes of other sulfate reducers (SRB). A high number of genome plasticity elements (> 100 transposon-related genes), several regions of GC discontinuity and a high number of repetitive elements (132 paralogous genes Mbp(-1)) point to a different genome evolution when comparing with Desulfovibrio spp. The metabolic versatility of Db. autotrophicum HRM2 is reflected in the presence of genes for the degradation of a variety of organic compounds including long-chain fatty acids and for the Wood-Ljungdahl pathway, which enables the organism to completely oxidize acetyl-CoA to CO2 but also to grow chemolithoautotrophically. The presence of more than 250 proteins of the sensory/regulatory protein families should enable Db. autotrophicum HRM2 to efficiently adapt to changing environmental conditions. Genes encoding periplasmic or cytoplasmic hydrogenases and formate dehydrogenases have been detected as well as genes for the transmembrane TpII-c(3), Hme and Rnf complexes. Genes for subunits A, B, C and D as well as for the proposed novel subunits L and F of the heterodisulfide reductases are present. This enzyme is involved in energy conservation in methanoarchaea and it is speculated that it exhibits a similar function in the process of dissimilatory sulfate reduction in Db. autotrophicum HRM2.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Strittmatter AW, Liesegang H, Rabus R, et al. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY. 2009;11(5):1038-1055.
Strittmatter, A. W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., et al. (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY, 11(5), 1038-1055.
Strittmatter, A. W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., Fricke, W. F., Martinez-Arias, R., Bartels, D., et al. (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY 11, 1038-1055.
Strittmatter, A.W., et al., 2009. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY, 11(5), p 1038-1055.
A.W. Strittmatter, et al., “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”, ENVIRONMENTAL MICROBIOLOGY, vol. 11, 2009, pp. 1038-1055.
Strittmatter, A.W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., Fricke, W.F., Martinez-Arias, R., Bartels, D., Goesmann, A., Krause, L., Pühler, A., Klenk, H.-P., Richter, M., Schueler, M., Gloeckner, F.O., Meyerdierks, A., Gottschalk, G., Amann, R.: Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY. 11, 1038-1055 (2009).
Strittmatter, Axel W., Liesegang, Heiko, Rabus, Ralf, Decker, Iwona, Amann, Judith, Andres, Soenke, Henne, Anke, Fricke, Wolfgang Florian, Martinez-Arias, Rosa, Bartels, Daniela, Goesmann, Alexander, Krause, Lutz, Pühler, Alfred, Klenk, Hans-Peter, Richter, Michael, Schueler, Margarete, Gloeckner, Frank Oliver, Meyerdierks, Anke, Gottschalk, Gerhard, and Amann, Rudolf. “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”. ENVIRONMENTAL MICROBIOLOGY 11.5 (2009): 1038-1055.
This data publication is cited in the following publications:
This publication cites the following data publications:

36 Citations in Europe PMC

Data provided by Europe PubMed Central.

Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M., Front Microbiol 7(), 2016
PMID: 27446006
Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.
Bargiela R, Herbst FA, Martinez-Martinez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN., Proteomics 15(20), 2015
PMID: 26201687
Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens.
Dalla Vecchia E, Shao PP, Suvorova E, Chiappe D, Hamelin R, Bernier-Latmani R., Front Microbiol 5(), 2014
PMID: 25191310
Recognition of Protein-coding Genes Based on Z-curve Algorithms.
-Biao Guo F, Lin Y, -Ling Chen L., Curr. Genomics 15(2), 2014
PMID: 24822027
A Brief Review: The Z-curve Theory and its Application in Genome Analysis.
Zhang R, Zhang CT., Curr. Genomics 15(2), 2014
PMID: 24822026
Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.
Reyes-Prieto A, Barquera B, Juarez O., PLoS ONE 9(5), 2014
PMID: 24809444
Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.
Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan VJ., Environ. Microbiol. 16(6), 2014
PMID: 24148160

100 References

Data provided by Europe PubMed Central.

The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex.
Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G., J. Bacteriol. 175(15), 1993
PMID: 8335628
Physical map location of the new Escherichia coli gene sbm.
Roy I, Leadlay PF., J. Bacteriol. 174(17), 1992
PMID: 1355087
Acetate oxidation to CO in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle
Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G., 1986
Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase
Schauder R, Preuß A, Jetten M, Fuchs G., 1989
Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis.
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G., J. Mol. Biol. 332(2), 2003
PMID: 12948488
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.
Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G., Proc. Natl. Acad. Sci. U.S.A. 105(6), 2008
PMID: 18218779
The Staden sequence analysis package.
Staden R., Mol. Biotechnol. 5(3), 1996
PMID: 8837029
The Staden package, 1998.
Staden R, Beal KF, Bonfield JK., Methods Mol. Biol. 132(), 2000
PMID: 10547834

Staron A, Sofia HJ, Liesegang H, Mascher T., 0
Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis.
Stojanowic A, Mander GJ, Duin EC, Hedderich R., Arch. Microbiol. 180(3), 2003
PMID: 12856108
PAS domains: internal sensors of oxygen, redox potential, and light.
Taylor BL, Zhulin IB., Microbiol. Mol. Biol. Rev. 63(2), 1999
PMID: 10357859
YACOP: Enhanced gene prediction obtained by a combination of existing methods.
Tech M, Merkl R., In Silico Biol. (Gedrukt) 3(4), 2003
PMID: 14965344
Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt).
Teske A, Ramsing NB, Habicht K, Fukui M, Kuver J, Jorgensen BB, Cohen Y., Appl. Environ. Microbiol. 64(8), 1998
PMID: 9687455
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough.
Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA., Chembiochem 2(12), 2001
PMID: 11948878
Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum deltaH.
Vermeij P, Pennings JL, Maassen SM, Keltjens JT, Vogels GD., J. Bacteriol. 179(21), 1997
PMID: 9352911
Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough.
Voordouw G., J. Bacteriol. 184(21), 2002
PMID: 12374824
Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models.
Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R., BMC Bioinformatics 7(), 2006
PMID: 16542435
Microbiology and ecology of sulfate-reducing bacteria
Widdel F., 1988
Gram-negative mesophilic sulfate-reducing bacteria
Widdel F, Bak F., 1992
PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.
Zhulin IB, Taylor BL, Dixon R., Trends Biochem. Sci. 22(9), 1997
PMID: 9301332

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19187283
PubMed | Europe PMC

Search this title in

Google Scholar