Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide

Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, et al. (2009)
ENVIRONMENTAL MICROBIOLOGY 11(5): 1038-1055.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Sulfate-reducing bacteria (SRB) belonging to the metabolically versatile Desulfobacteriaceae are abundant in marine sediments and contribute to the global carbon cycle by complete oxidation of organic compounds. Desulfobacterium autotrophicum HRM2 is the first member of this ecophysiologically important group with a now available genome sequence. With 5.6 megabasepairs (Mbp) the genome of Db. autotrophicum HRM2 is about 2 Mbp larger than the sequenced genomes of other sulfate reducers (SRB). A high number of genome plasticity elements (> 100 transposon-related genes), several regions of GC discontinuity and a high number of repetitive elements (132 paralogous genes Mbp(-1)) point to a different genome evolution when comparing with Desulfovibrio spp. The metabolic versatility of Db. autotrophicum HRM2 is reflected in the presence of genes for the degradation of a variety of organic compounds including long-chain fatty acids and for the Wood-Ljungdahl pathway, which enables the organism to completely oxidize acetyl-CoA to CO2 but also to grow chemolithoautotrophically. The presence of more than 250 proteins of the sensory/regulatory protein families should enable Db. autotrophicum HRM2 to efficiently adapt to changing environmental conditions. Genes encoding periplasmic or cytoplasmic hydrogenases and formate dehydrogenases have been detected as well as genes for the transmembrane TpII-c(3), Hme and Rnf complexes. Genes for subunits A, B, C and D as well as for the proposed novel subunits L and F of the heterodisulfide reductases are present. This enzyme is involved in energy conservation in methanoarchaea and it is speculated that it exhibits a similar function in the process of dissimilatory sulfate reduction in Db. autotrophicum HRM2.
Erscheinungsjahr
Zeitschriftentitel
ENVIRONMENTAL MICROBIOLOGY
Band
11
Zeitschriftennummer
5
Seite
1038-1055
ISSN
eISSN
PUB-ID

Zitieren

Strittmatter AW, Liesegang H, Rabus R, et al. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY. 2009;11(5):1038-1055.
Strittmatter, A. W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., et al. (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY, 11(5), 1038-1055. doi:10.1111/j.1462-2920.2008.01825.x
Strittmatter, A. W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., Fricke, W. F., Martinez-Arias, R., Bartels, D., et al. (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY 11, 1038-1055.
Strittmatter, A.W., et al., 2009. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY, 11(5), p 1038-1055.
A.W. Strittmatter, et al., “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”, ENVIRONMENTAL MICROBIOLOGY, vol. 11, 2009, pp. 1038-1055.
Strittmatter, A.W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., Fricke, W.F., Martinez-Arias, R., Bartels, D., Goesmann, A., Krause, L., Pühler, A., Klenk, H.-P., Richter, M., Schueler, M., Gloeckner, F.O., Meyerdierks, A., Gottschalk, G., Amann, R.: Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY. 11, 1038-1055 (2009).
Strittmatter, Axel W., Liesegang, Heiko, Rabus, Ralf, Decker, Iwona, Amann, Judith, Andres, Soenke, Henne, Anke, Fricke, Wolfgang Florian, Martinez-Arias, Rosa, Bartels, Daniela, Goesmann, Alexander, Krause, Lutz, Pühler, Alfred, Klenk, Hans-Peter, Richter, Michael, Schueler, Margarete, Gloeckner, Frank Oliver, Meyerdierks, Anke, Gottschalk, Gerhard, and Amann, Rudolf. “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”. ENVIRONMENTAL MICROBIOLOGY 11.5 (2009): 1038-1055.

49 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi.
Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R, Jørgensen BB, Adrian L., ISME J 8(2), 2014
PMID: 23966099
Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics.
Abreu F, Morillo V, Nascimento FF, Werneck C, Cantão ME, Ciapina LP, de Almeida LG, Lefèvre CT, Bazylinski DA, de Vasconcelos AT, Lins U., ISME J 8(5), 2014
PMID: 24196322
Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.
Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan VJ., Environ Microbiol 16(6), 2014
PMID: 24148160
Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium.
Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R., Environ Microbiol 15(5), 2013
PMID: 23088741
A genomic approach to the cryptic secondary metabolome of the anaerobic world.
Letzel AC, Pidot SJ, Hertweck C., Nat Prod Rep 30(3), 2013
PMID: 23263685
Early bioenergetic evolution.
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IA, Allen JF, Lane N, Martin WF., Philos Trans R Soc Lond B Biol Sci 368(1622), 2013
PMID: 23754820
Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.
Schunck H, Lavik G, Desai DK, Großkopf T, Kalvelage T, Löscher CR, Paulmier A, Contreras S, Siegel H, Holtappels M, Rosenstiel P, Schilhabel MB, Graco M, Schmitz RA, Kuypers MM, Laroche J., PLoS One 8(8), 2013
PMID: 23990875
The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.
Callaghan AV, Morris BE, Pereira IA, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B., Environ Microbiol 14(1), 2012
PMID: 21651686
Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis.
Berger M, Brock NL, Liesegang H, Dogs M, Preuth I, Simon M, Dickschat JS, Brinkhoff T., Appl Environ Microbiol 78(10), 2012
PMID: 22407685
Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.
Kaster AK, Moll J, Parey K, Thauer RK., Proc Natl Acad Sci U S A 108(7), 2011
PMID: 21262829
A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.
Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS., Front Microbiol 2(), 2011
PMID: 21747791
How sulphate-reducing microorganisms cope with stress: lessons from systems biology.
Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA, Wall JD, Arkin AP., Nat Rev Microbiol 9(6), 2011
PMID: 21572460
Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group.
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R., Environ Microbiol 12(2), 2010
PMID: 19878267
The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production.
Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ., Environ Microbiol 12(8), 2010
PMID: 21966920
The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1.
Junier P, Junier T, Podell S, Sims DR, Detter JC, Lykidis A, Han CS, Wigginton NS, Gaasterland T, Bernier-Latmani R., Environ Microbiol 12(10), 2010
PMID: 20482743
Complete genome sequence of Desulfarculus baarsii type strain (2st14).
Sun H, Spring S, Lapidus A, Davenport K, Del Rio TG, Tice H, Nolan M, Copeland A, Cheng JF, Lucas S, Tapia R, Goodwin L, Pitluck S, Ivanova N, Pagani I, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Hauser L, Chang YJ, Jeffries CD, Detter JC, Han C, Rohde M, Brambilla E, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Land M., Stand Genomic Sci 3(3), 2010
PMID: 21304732
Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575).
Spring S, Lapidus A, Schröder M, Gleim D, Sims D, Meincke L, Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Saunders E, Brettin T, Detter JC, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Han C., Stand Genomic Sci 1(3), 2009
PMID: 21304664

100 References

Daten bereitgestellt von Europe PubMed Central.

The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex.
Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G., J. Bacteriol. 175(15), 1993
PMID: 8335628
Physical map location of the new Escherichia coli gene sbm.
Roy I, Leadlay PF., J. Bacteriol. 174(17), 1992
PMID: 1355087
Acetate oxidation to CO in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle
Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G., 1986
Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase
Schauder R, Preuß A, Jetten M, Fuchs G., 1989
Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis.
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G., J. Mol. Biol. 332(2), 2003
PMID: 12948488
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.
Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G., Proc. Natl. Acad. Sci. U.S.A. 105(6), 2008
PMID: 18218779
The Staden sequence analysis package.
Staden R., Mol. Biotechnol. 5(3), 1996
PMID: 8837029
The Staden package, 1998.
Staden R, Beal KF, Bonfield JK., Methods Mol. Biol. 132(), 2000
PMID: 10547834

Staron A, Sofia HJ, Liesegang H, Mascher T., 0
Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis.
Stojanowic A, Mander GJ, Duin EC, Hedderich R., Arch. Microbiol. 180(3), 2003
PMID: 12856108
PAS domains: internal sensors of oxygen, redox potential, and light.
Taylor BL, Zhulin IB., Microbiol. Mol. Biol. Rev. 63(2), 1999
PMID: 10357859
YACOP: Enhanced gene prediction obtained by a combination of existing methods.
Tech M, Merkl R., In Silico Biol. (Gedrukt) 3(4), 2003
PMID: 14965344
Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt).
Teske A, Ramsing NB, Habicht K, Fukui M, Kuver J, Jorgensen BB, Cohen Y., Appl. Environ. Microbiol. 64(8), 1998
PMID: 9687455
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough.
Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA., Chembiochem 2(12), 2001
PMID: 11948878
Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum deltaH.
Vermeij P, Pennings JL, Maassen SM, Keltjens JT, Vogels GD., J. Bacteriol. 179(21), 1997
PMID: 9352911
Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough.
Voordouw G., J. Bacteriol. 184(21), 2002
PMID: 12374824
Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models.
Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R., BMC Bioinformatics 7(), 2006
PMID: 16542435
Microbiology and ecology of sulfate-reducing bacteria
Widdel F., 1988
Gram-negative mesophilic sulfate-reducing bacteria
Widdel F, Bak F., 1992
PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.
Zhulin IB, Taylor BL, Dixon R., Trends Biochem. Sci. 22(9), 1997
PMID: 9301332

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19187283
PubMed | Europe PMC

Suchen in

Google Scholar