Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays

Jochmann N, Kurze A-K, Czaja LF, Brinkrolf K, Brune I, Hueser AT, Hansmeier N, Pühler A, Borovok I, Tauch A (2009)
MICROBIOLOGY 155(5): 1459-1477.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
The lexA gene of Corynebacterium glutamicum ATCC 13032 was deleted to create the mutant strain C. glutamicum NJ2114, which has an elongated cell morphology and an increased doubling time. To characterize the SOS regulon in C. glutamicum, the transcriptomes of NJ2114 and a DNA-damage-induced wild-type strain were compared with that of a wild-type control using DNA microarray hybridization. The expression data were combined with bioinformatic pattern searches for LexA binding sites, leading to the detection of 46 potential SOS boxes located upstream of differentially expressed transcription units. Binding of a hexahistidyl-tagged LexA protein to 40 double-stranded oligonucleotides containing the potential SOS boxes was demonstrated in vitro by DNA band shift assays. It turned out that LexA binds not only to SOS boxes in the promoter-operator region of upregulated genes, but also to SOS boxes detected upstream of downregulated genes. These results demonstrated that LexA controls directly the expression of at least 48 SOS genes organized in 36 transcription units. The deduced genes encode a variety of physiological functions, many of them involved in DNA repair and survival after DNA damage, but nearly half of them have hitherto unknown functions. Alignment of the LexA binding sites allowed the corynebacterial SOS box consensus sequence TcGAA(a/c)AnnTGTtCGA to be deduced. Furthermore, the common intergenic region of lexA and the differentially expressed divS-nrdR operon, encoding a cell division suppressor and a regulator of deoxyribonucleotide biosynthesis, was characterized in detail. Promoter mapping revealed differences in divS-nrdR expression during SOS response and normal growth conditions. One of the four LexA binding sites detected in the intergenic region is involved in regulating divS-nrdR transcription, whereas the other sites are apparently used for negative autoregulation of lexA expression.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Jochmann N, Kurze A-K, Czaja LF, et al. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY. 2009;155(5):1459-1477.
Jochmann, N., Kurze, A. - K., Czaja, L. F., Brinkrolf, K., Brune, I., Hueser, A. T., Hansmeier, N., et al. (2009). Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY, 155(5), 1459-1477.
Jochmann, N., Kurze, A. - K., Czaja, L. F., Brinkrolf, K., Brune, I., Hueser, A. T., Hansmeier, N., Pühler, A., Borovok, I., and Tauch, A. (2009). Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY 155, 1459-1477.
Jochmann, N., et al., 2009. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY, 155(5), p 1459-1477.
N. Jochmann, et al., “Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays”, MICROBIOLOGY, vol. 155, 2009, pp. 1459-1477.
Jochmann, N., Kurze, A.-K., Czaja, L.F., Brinkrolf, K., Brune, I., Hueser, A.T., Hansmeier, N., Pühler, A., Borovok, I., Tauch, A.: Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY. 155, 1459-1477 (2009).
Jochmann, Nina, Kurze, Anna-Katharina, Czaja, Lisa F., Brinkrolf, Karina, Brune, Iris, Hueser, Andrea T., Hansmeier, Nicole, Pühler, Alfred, Borovok, Ilya, and Tauch, Andreas. “Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays”. MICROBIOLOGY 155.5 (2009): 1459-1477.
This data publication is cited in the following publications:
This publication cites the following data publications:

18 Citations in Europe PMC

Data provided by Europe PubMed Central.

An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria.
Sanchez-Alberola N, Campoy S, Emerson D, Barbe J, Erill I., J. Bacteriol. 197(16), 2015
PMID: 25986903
Cell division in Corynebacterineae.
Donovan C, Bramkamp M., Front Microbiol 5(), 2014
PMID: 24782835
Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level.
Nanda AM, Heyer A, Kramer C, Grunberger A, Kohlheyer D, Frunzke J., J. Bacteriol. 196(1), 2014
PMID: 24163339
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
DNA repair and genome maintenance in Bacillus subtilis.
Lenhart JS, Schroeder JW, Walsh BW, Simmons LA., Microbiol. Mol. Biol. Rev. 76(3), 2012
PMID: 22933559
Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis.
Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO., J. Biol. Chem. 287(26), 2012
PMID: 22528497
Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.
Hodar C, Moreno P, di Genova A, Latorre M, Reyes-Jara A, Maass A, Gonzalez M, Cambiazo V., Biometals 25(1), 2012
PMID: 21830017
The Zur regulon of Corynebacterium glutamicum ATCC 13032.
Schroder J, Jochmann N, Rodionov DA, Tauch A., BMC Genomics 11(), 2010
PMID: 20055984

77 References

Data provided by Europe PubMed Central.

The bacterial LexA transcriptional repressor.
Butala M, Zgur-Bertok D, Busby SJ., Cell. Mol. Life Sci. 66(1), 2009
PMID: 18726173
Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces.
Moller C, Allen M, Elings V, Engel A, Muller DJ., Biophys. J. 77(2), 1999
PMID: 10423460

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19372162
PubMed | Europe PMC

Search this title in

Google Scholar