A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJL, Kane C, Huebel K, et al. (2009)
NATURE CELL BIOLOGY 11(6): 705-716.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine structure by performing a functional screen. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (G alpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized G alpha(13) both suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of G alpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Siegel G, Obernosterer G, Fiore R, et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. NATURE CELL BIOLOGY. 2009;11(6):705-716.
Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen, M., Khudayberdiev, S., et al. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. NATURE CELL BIOLOGY, 11(6), 705-716.
Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen, M., Khudayberdiev, S., Leuschner, P. F., Busch, C. J. L., Kane, C., et al. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. NATURE CELL BIOLOGY 11, 705-716.
Siegel, G., et al., 2009. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. NATURE CELL BIOLOGY, 11(6), p 705-716.
G. Siegel, et al., “A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis”, NATURE CELL BIOLOGY, vol. 11, 2009, pp. 705-716.
Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen, M., Khudayberdiev, S., Leuschner, P.F., Busch, C.J.L., Kane, C., Huebel, K., Dekker, F., Hedberg, C., Rengarajan, B., Drepper, C., Waldmann, H., Kauppinen, S., Greenberg, M.E., Draguhn, A., Rehmsmeier, M., Martinez, J., Schratt, G.M.: A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. NATURE CELL BIOLOGY. 11, 705-716 (2009).
Siegel, Gabriele, Obernosterer, Gregor, Fiore, Roberto, Oehmen, Martin, Bicker, Silvia, Christensen, Mette, Khudayberdiev, Sharof, Leuschner, Philipp F., Busch, Clara J. L., Kane, Christina, Huebel, Katja, Dekker, Frank, Hedberg, Christian, Rengarajan, Balamurugan, Drepper, Carsten, Waldmann, Herbert, Kauppinen, Sakari, Greenberg, Michael E., Draguhn, Andreas, Rehmsmeier, Marc, Martinez, Javier, and Schratt, Gerhard M. “A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis”. NATURE CELL BIOLOGY 11.6 (2009): 705-716.
This data publication is cited in the following publications:
This publication cites the following data publications:

204 Citations in Europe PMC

Data provided by Europe PubMed Central.

Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.
Fiorenza A, Lopez-Atalaya JP, Rovira V, Scandaglia M, Geijo-Barrientos E, Barco A., Cereb. Cortex 26(4), 2016
PMID: 25595182
miRs-138 and -424 control palmitoylation-dependent CD95-mediated cell death by targeting acyl protein thioesterases 1 and 2 in CLL.
Berg V, Rusch M, Vartak N, Jungst C, Schauss A, Waldmann H, Hedberg C, Pallasch CP, Bastiaens PI, Hallek M, Wendtner CM, Frenzel LP., Blood 125(19), 2015
PMID: 25670628
Mnemonic microRNAs help make memories.
Leslie M., J. Cell Biol. 194(6), 2011
PMID: PMC3207282
MicroRNA-mediated regulation of synaptic palmitoylation: shrinking fat spines.
Carrel D, Firestein BL., Nat. Cell Biol. 11(6), 2009
PMID: 19488059

50 References

Data provided by Europe PubMed Central.

Identification of many microRNAs that copurify with polyribosomes in mammalian neurons.
Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G., Proc. Natl. Acad. Sci. U.S.A. 101(1), 2004
PMID: 14691248
Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing.
Meister G, Landthaler M, Dorsett Y, Tuschl T., RNA 10(3), 2004
PMID: 14970398
Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton.
Zito K, Knott G, Shepherd GM, Shenolikar S, Svoboda K., Neuron 44(2), 2004
PMID: 15473970
MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression.
Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT., Nat. Genet. 36(10), 2004
PMID: 15361871
A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis.
Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S., Proc. Natl. Acad. Sci. U.S.A. 102(45), 2005
PMID: 16260724
Fast and effective prediction of microRNA/target duplexes.
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R., RNA 10(10), 2004
PMID: 15383676
RNAhybrid: microRNA target prediction easy, fast and flexible.
Kruger J, Rehmsmeier M., Nucleic Acids Res. 34(Web Server issue), 2006
PMID: 16845047
Distinct roles for ephrinB3 in the formation and function of hippocampal synapses.
Rodenas-Ruano A, Perez-Pinzon MA, Green EJ, Henkemeyer M, Liebl DJ., Dev. Biol. 292(1), 2006
PMID: 16466709
PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa.
Etournay R, El-Amraoui A, Bahloul A, Blanchard S, Roux I, Pezeron G, Michalski N, Daviet L, Hardelin JP, Legrain P, Petit C., J. Cell. Sci. 118(Pt 13), 2005
PMID: 15976448
cAMP-GEFII is a direct target of cAMP in regulated exocytosis.
Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S., Nat. Cell Biol. 2(11), 2000
PMID: 11056535
Synaptic strength regulated by palmitate cycling on PSD-95.
El-Husseini Ael-D, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier-Campbell C, Aguilera-Moreno A, Nicoll RA, Bredt DS., Cell 108(6), 2002
PMID: 11955437
Palmitoylation: policing protein stability and traffic
Linder ME, Deschenes RJ., 2007
Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation.
Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR 3rd, Davis NG, El-Husseini A., Nature 456(7224), 2008
PMID: 19092927
Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR
Kye MJ., 2007
Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain
Lugli G, Torvik VI, Larson J, Smalheiser NR., 2008
Lim kinases, regulators of actin dynamics.
Bernard O., Int. J. Biochem. Cell Biol. 39(6), 2007
PMID: 17188549
Molecular mechanisms of dendritic spine morphogenesis.
Tada T, Sheng M., Curr. Opin. Neurobiol. 16(1), 2006
PMID: 16361095
Post-transcriptional regulation of microRNA expression.
Obernosterer G, Leuschner PJ, Alenius M, Martinez J., RNA 12(7), 2006
PMID: 16738409
BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development
Schratt GM, Nigh EA, Chen WG, Hu L, Greenberg ME., 2004
An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development.
Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, Griffith EC, Zhu L, Brass LF, Chen C, Greenberg ME., Neuron 53(2), 2007
PMID: 17224404
Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections.
Obernosterer G, Martinez J, Alenius M., Nat Protoc 2(6), 2007
PMID: 17571058

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19465924
PubMed | Europe PMC

Search this title in

Google Scholar