Elementary non-Archimedean utility theory

Herzberg F (2009)
MATHEMATICAL SOCIAL SCIENCES 58(1): 8-14.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
A non-Archimedean utility representation theorem for independent and transitive preference orderings that are partially continuous on some convex subset and satisfy an axiom of incommensurable preference for elements outside that subset is proven. For complete preference orderings, the theorem is deduced directly from the classical von Neumann-Morgenstern theorem; in the absence of completeness, Aumann's [Aumann, R.J., 1962. Utility theory without the completeness axiom. Econometrica 30 (3), 445-462] generalization is utilized. (C) 2009 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Herzberg F. Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES. 2009;58(1):8-14.
Herzberg, F. (2009). Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES, 58(1), 8-14.
Herzberg, F. (2009). Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES 58, 8-14.
Herzberg, F., 2009. Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES, 58(1), p 8-14.
F. Herzberg, “Elementary non-Archimedean utility theory”, MATHEMATICAL SOCIAL SCIENCES, vol. 58, 2009, pp. 8-14.
Herzberg, F.: Elementary non-Archimedean utility theory. MATHEMATICAL SOCIAL SCIENCES. 58, 8-14 (2009).
Herzberg, Frederik. “Elementary non-Archimedean utility theory”. MATHEMATICAL SOCIAL SCIENCES 58.1 (2009): 8-14.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar