Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution

Hennig S, van de Linde S, Heilemann M, Sauer M (2009)
Nano Letters 9(6): 2466-2470.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
We describe a simple method that improves optical resolution in fluorescence microscopy approximately 1.7-fold in all three dimensions and can be implemented on any basic confocal scanning microscope. This approach is based on three-photon absorption of commercially available quantum dots generating a triple exciton (triexciton) and subsequent blue-shifted fluorescence emission following recombination of the triexciton. As a pure physical approach, the resolution enhancement is independent from the nanoenvironment and demonstrated to work in living cells.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Hennig S, van de Linde S, Heilemann M, Sauer M. Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution. Nano Letters. 2009;9(6):2466-2470.
Hennig, S., van de Linde, S., Heilemann, M., & Sauer, M. (2009). Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution. Nano Letters, 9(6), 2466-2470.
Hennig, S., van de Linde, S., Heilemann, M., and Sauer, M. (2009). Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution. Nano Letters 9, 2466-2470.
Hennig, S., et al., 2009. Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution. Nano Letters, 9(6), p 2466-2470.
S. Hennig, et al., “Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution”, Nano Letters, vol. 9, 2009, pp. 2466-2470.
Hennig, S., van de Linde, S., Heilemann, M., Sauer, M.: Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution. Nano Letters. 9, 2466-2470 (2009).
Hennig, Simon, van de Linde, Sebastian, Heilemann, Mike, and Sauer, Markus. “Quantum Dot Triexciton Imaging with Three-Dimensional Subdiffraction Resolution”. Nano Letters 9.6 (2009): 2466-2470.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots.
Sporbert A, Cseresnyes Z, Heidbreder M, Domaing P, Hauser S, Kaltschmidt B, Kaltschmidt C, Heilemann M, Widera D., PLoS ONE 8(5), 2013
PMID: 23700448
Ultrafast electron transfer from photoexcited CdSe quantum dots to methylviologen.
Scholz F, Dworak L, Matylitsky VV, Wachtveitl J., Chemphyschem 12(12), 2011
PMID: 21726036
Energetics and dynamics of exciton-exciton interactions in compound colloidal semiconductor quantum dots.
Deutsch Z, Avidan A, Pinkas I, Oron D., Phys Chem Chem Phys 13(8), 2011
PMID: 21229166
Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI).
Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S., Opt Express 18(18), 2010
PMID: 20940780
Subdiffraction fluorescence imaging of biomolecular structure and distributions with quantum dots.
Heidbreder M, Endesfelder U, van de Linde S, Hennig S, Widera D, Kaltschmidt B, Kaltschmidt C, Heilemann M., Biochim. Biophys. Acta 1803(10), 2010
PMID: 20600360
Fluorescence lifetime measurements and biological imaging.
Berezin MY, Achilefu S., Chem. Rev. 110(5), 2010
PMID: 20356094

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19453186
PubMed | Europe PMC

Search this title in

Google Scholar